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Abstract

Suppose a principal in a cryptographic protocol creates and transmits a message
containing a new value v, later receiving v back in a different cryptographic con-
text. It can conclude that some principal possessing the relevant key has received
and transformed the message in which v was emitted. In some circumstances, this
principal must be a regular participant of the protocol, not the penetrator.

An inference of this kind is an authentication test. We introduce two main kinds of
authentication test. An outgoing test is one in which the new value v is transmitted
in encrypted form, and only a regular participant can extract it from that form.
An incoming test is one in which v is received back in encrypted form, and only
a regular participant can put it in that form. We combine these two tests with a
supplementary idea, the unsolicited test, and a related method for checking that keys
remain secret. Together, these techniques determine what authentication properties
are achieved by a wide range of cryptographic protocols.

In this paper we introduce authentication tests and prove their soundness. We
illustrate their power by giving new and straightforward proofs of security goals for
several protocols. We also illustrate how to use the authentication tests as a heuristic
for finding attacks against incorrect protocols. Finally, we suggest a protocol design
process.

We express these ideas in the strand space formalism, which provides a convenient
context to prove them correct.

Key words: cryptographic protocols, authentication, secrecy, strand spaces,
bundles, cryptographic protocol design
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1 Introduction

One reason why cryptographic protocol analysis is hard is that the attacker
has so many choices. He may apply a repertory of actions in any order to any
message he observes, and he may submit the results in place of any legitimate
message. In addition, the attacker may initiate new sessions of the protocol, or
await sessions initiated by regular participants [7]. Consequently, even though
cryptographic protocols are simple finite state activities in the absence of an
attacker, the analysis of possible attacks is not necessarily decidable; indeed,
even if the protocols are restricted so that the problem is decidable, it may
not be tractable [3].

In this paper we use the strand space formalism [26] to restrict the order
in which the penetrator applies the operations available to him (Section 3).
Anything the penetrator can do at all, he can do carrying out operations in
this restricted order. There are two ingredients in the restriction, a normal
form lemma (Section 3.2, Proposition 5), and an efficiency condition (Sec-
tion 3.6, Proposition 14). The normal form lemma is not new [5, 3], although
the efficiency condition appears to be.

The main novelty in this paper are some very simple-to-apply methods for
authentication and secrecy results, which the penetrator restrictions justify.
An important consequence of the restrictions is that, for certain encrypted
components of messages, the penetrator cannot take any significant action.
Those components may be discarded, but if they are delivered to a regular
participant, they can only be delivered unaltered. Only the regular participants
can change these encrypted components in the way demanded by the protocol.

Therefore this kind of component may be regarded as an authentication test
component : if the contents are later received in transformed form, then only a
regular participant, not the penetrator, can have transformed them. In favor-
able circumstances, it can only be one regular participant, the intended one,
who has thereby been authenticated.

We embody these ideas in three authentication results (Section 4.2, Authen-
tication Tests 1–3). These results allow us to establish many authentication
results without any consideration of the dynamic execution of protocols, in-
volving the activity of several principals. Instead, it suffices to consider the
forms of the possible behaviors of the principals independently. We use the
Needham-Schroeder-Lowe protocol [17, 13] in explaining the ideas. In Sec-
tion 5, we illustrate the authentication tests by proving the authentication
properties of some familiar protocols and identifying counter-examples to oth-
ers. The protocols we consider are from [19, 18, 27, 29]. It is routine to apply

proofs) appeared as [9].
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the method to new protocols, whether they use public keys or shared sym-
metric keys.

However, not every protocol can be verified using these methods. In particular,
for the authentication theorems to apply, the protocol must not allow the
authentications tests to be proper sub-messages of other messages manipulated
by the regular participants. We end (Section 6) with a design process leading
to protocols that not only avoid this sort of nesting, but also concentrate the
crucial parameters to be authenticated in a small number of authentication
test components.

The authentication tests themselves are easy to apply, but the proofs justify-
ing them are more complicated. We would compare the authentication tests
to the interface to a module; the implementation internal to the module is
complex, but the interface makes it easy to use its services without worrying
about the internals. For some purposes it would be helpful to enlarge the in-
terface. There are additional services, or ways of drawing conclusions about
authentication protocols, that the proof methods of Sections 3 and 4 can offer.
For instance, one addition would be to make explicit the order in which events
have occurred, which gives a convenient way to reason about whether a key
has been generated recently. An enrichment of the message algebra would ex-
plicitly model the way a key may be generated by hashing other values (as is
used e.g. in the SSL and TLS protocols [6]). However, the authentication tests
currently exported in Section 4 already apply to a wide range of protocols,
and give a highly intuitive explanation for why they are right, or where they
go wrong.

The authentication tests, and some extensions, have been incorporated [21]
into Athena [[23]], an automated system for protocol analysis based on the
strand space model. Athena has been applied to large numbers of candidate
protocols output by an automated protocol generator. In one two hour run,
11,000 candidates were filtered, yielding five successful protocols. Since the
generator itself prunes protocols to avoid obvious flaws, this is a remarkable
level of performance.

The proof methods of Section 3 can be used for other purposes also; in [10]
we use them to study when different protocols may be safely combined.

1.1 Strand Spaces

We very briefly summarize the ideas behind the strand space model [26]; see
also Appendix A.

A is the set of messages that can be sent between principals. We call elements
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of A terms. A is freely generated from two disjoint sets, T (representing texts
such as nonces or names) and K (representing keys) by means of concatenation
and encryption. The concatenation of terms g and h is denoted g h, and the
encryption of h using key K is denoted {|h|}K. (See Appendix A.3.)

For example, in the Needham-Schroeder protocol [17], the initiator A sends
a term of the form {|NaA|}KB

to start an exchange intended for B. This is
a ciphertext created using B’s public key KB; the plaintext is the result of
concatenating a nonce (random bitstring) Na and A’s name.

A term t is a subterm of another term t′, written t @ t′, if starting with t we
can reach t′ by repeatedly concatenating with arbitrary terms and encrypting
with arbitrary keys. Hence, K �@ {|t|}K , except in case K @ t. The subterms
of t are the values that are uttered when t is sent; in {|t|}K , K is not uttered
but used. (See Definition 21.)

For instance, the subterms of {|NaA|}KB
are Na, A, the concatenated message

NaA, and {|NaA|}KB
itself. The key KB is not part of what is uttered; it just

contributes to how the message is constructed.

A strand is a sequence of message transmissions and receptions, where trans-
mission of a term t is represented as +t and reception of term t is represented
as −t. A strand element is called a node. If s is a strand, 〈s, i〉 is the ith node
on s. The relation n ⇒ n′ holds between nodes n and n′ if n = 〈s, i〉 and
n′ = 〈s, i+ 1〉. Hence, n⇒+ n′ means that n = 〈s, i〉 and n′ = 〈s, j〉 for some
j > i. The relation n → n′ represents inter-strand communication; it means
that term(n) = +t and node term(n′) = −t.

Continuing with the Needham-Schroeder protocol as our pedagogical illustra-
tion, an initiator strand offers a sequence of events of the form

〈+{|NaA|}KB
, −{|NaNb|}KA

, +{|Nb|}KB
〉

In this strand si, the initiator A sends a term {|NaA|}KB
intended for the

responder B, and expects to receive back a term of the form {|NaNb|}KA
, after

which it will send {|Nb|}KB
. The reception is 〈si, 2〉 and the final transmission is

〈si, 3〉. The responder strands offer a sequence of events of the complementary
form

〈−{|NaA|}KB
, +{|NaNb|}KA

, −{|Nb|}KB
〉

When the data values Na, A, . . . , match between an initiator strand si and
a responder strand sr, then we have 〈si, 1〉 → 〈sr, 1〉 and 〈sr, 2〉 → 〈si, 2〉.
An initiator or responder strand has four parameters (or degrees of freedom),
namely the two nonces Na and Nb and the two names A and B. For this
illustration, we regard the public keys KA and KB to be reliably determined
from A and B, possibly by some public key infrastructure. When we write
si ∈ NSInit[A,B,Na, Nb] in this illustration, we will mean that si is an initiator
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A
{|NaA|}KB → B

•
�
�

←{|NaNb|}KA •
�
�

•
�
�

{|Nb|}KB → •
�
�

Fig. 1. A Bundle: Intended Run of Needham-Schroeder

strand using the particular values shown as parameters, and similarly for sr ∈
NSResp[A,B,Na, Nb]. The principal active in NSInit[A,B,Na, Nb] as initiator
is A, while the principal active in NSResp[A,B,Na, Nb] as responder is B.

A strand space Σ is a set of strands. Σ typically will not contain strands of
every possible kind NSInit[A,B,Na, Nb] and NSResp[A,B,Na, Nb], modeling
the fact that nonces are chosen from a large set and are used very sparsely,
even over substantial periods. The two relations ⇒ and → jointly impose a
graph structure on the nodes of Σ. The vertices of this graph are the nodes,
and the edges are the union of ⇒ and →.

We say that a term t originates at a node n = 〈s, i〉 if the sign of n is positive;
t @ term(n); and t �@ term(〈s, i′〉) for every i′ < i. Thus, n represents a
message transmission that includes t, and it is the first node in s including
t. For instance, if si ∈ NSInit[A,B,Na, Nb], then Na and A both originate at
〈si, 1〉. If sr ∈ NSResp[A,B,Na, Nb], then Nb originates at 〈sr, 2〉, assuming
that Nb is distinct from Na and A, which have already been received at 〈sr, 1〉.

If a value originates on only one node in the strand space, we call it uniquely
originating ; uniquely originating values are desirable as nonces and session
keys. In a particular strand space, a nonce Na may originate uniquely on 〈si, 1〉,
in which case there is at most one strand in NSInit[A,B,Na, Nb]. A is unlikely
to originate uniquely, because the same name will be used in many runs with
many partners. When we assume that a value like Na originates uniquely in
some strand space Σ, we are effectively assuming that Σ is not unrealistically
large, in a particular sense, namely so large as to contain independent events
in which the same value is repeatedly chosen at random from a large set.

A bundle is a causally well-founded collection of nodes and arrows of both
kinds. In a bundle, when a strand receives a message m, there is a unique
node transmitting m from which the message was immediately received. By
contrast, when a strand transmits a message m, many strands (or none) may
immediately receive m. (See Definition 19.) The height of a strand in a bundle
is the number of nodes on the strand that are in the bundle. Authentication
theorems generally assert that a strand has at least a given height in some
bundle, meaning that the principal must have engaged in at least that many
steps of its run. Two illustrative bundles are shown in Figures 1–2. In Fig-
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A
{|NaA|}KP → P

•
�
�

{|NaA|}KB→ B

•
�

��������

← {|NaNb|}KA •
�
�

•
�
�

{|Nb|}KP → P

•
�
�

{|Nb|}KB→ •
�

��������

Fig. 2. A Bundle: Penetrated Run of Needham-Schroeder

ure 1, initiator and responder match strands in the expected way, while in
Figure 2 a penetrator manipulates B into believing that A is having a ses-
sion with B, whereas in fact A intends to have a session with P [12, 13].
More formally, the strand on the left side is in the set NSInit[A, P,NaNb], not
NSInit[A,B,Na, Nb].

Given any bundle C, there is a natural partial ordering on the nodes of C,
which we refer to as C, according to which n1 C n2 if there is a path
from n1 to n2 using zero or more arrows of either kind (Definition 20). This
relation expresses the fact that n1 causally contributes to n2 occurring in C.
In Figures 1 and 2, the relation happens to be a linear ordering, but this is
not true in Figure 3, where neither K node is accessible from the other.

A strand represents the local view of a participant in a run of a protocol. For a
legitimate participant, it represents the messages that participant would send
or receive as part of one particular run of his side of the protocol. We call a
strand representing a legitimate participant a regular strand. For the penetra-
tor, the strand represents an atomic deduction. More complex actions can be
formed by connecting several penetrator strands. While regular principals are
represented only by what they say and hear, the behavior of the penetrator
is represented more explicitly, because the values he deduces are treated as if
they had been said publicly.

We partition penetrator strands according to the operations they exemplify.
E-strands encrypt when given a key and a plaintext; D-strands decrypt when
given a decryption key and matching ciphertext; C-strands and S-strands con-
catenate and separate terms, respectively; K-strands emit keys from a set of
known keys; and M-strands emit known atomic texts or guesses. (See Defini-
tion 23.)

As an example, the compound behavior of the penetrator P , shown at the
center top in Figure 2, can be realized using several of our official penetrator
strands as shown in Figure 3, in which nodes π1 and π6 represent the nodes
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D
K

• K−1
P → •

π1

{|NaA|}KP → π2

�
�

E K

ψ2 ← KB
ψ1

π3

�

������������
NaA→ π4

�

���

π5

�

���
{|NaA|}KB→ π6

Fig. 3. Penetrator Strands for Needham-Schroeder Attack

shared with Figure 2. This figure should be regarded as a part of Figure 2,
shown separately simply to reduce its complexity. Some nodes have been la-
belled for later use.

In Figure 3, the penetrator emits a private key K−1
P that is known to himself,

and uses the result on a D strand to decrypt the incoming message. He emits
a public key KB known (presumably) to everyone, using it in an encryption
strand to produce the term {|NaA|}KB

, needed to start the process of duping
B. The other penetrator action shown in Figure 2 may be expanded in a
similar manner.

1.2 New Components

When a node transmits or receives a concatenated message, the penetrator—
using C-strands and S-strands—has full power over how the parts are concate-
nated together. Thus, the important units for protocol correctness are what
we call the components. A term t0 is a component of t if t0 @ t, t0 is not a
concatenated term, and every t1 �= t0 such that t0 @ t1 @ t is a concatenated
term. Components are either atomic values or encryptions. (See Definition 22.)
For instance, the term {|NaA|}KB

consists of a single component, while NaA
has two components, the atomic values Na and A. We say t is a component
of a node n if t is a component of term(n).

A term t is new at n = 〈s, i〉 if t is a component of term(n), but t is not a
component of node 〈s, j〉 for every j < i (Definition 22). A component is new
even if it has occurred earlier as a nested subterm of some larger component
· · · {| · · · t · · · |}K · · · . For instance, {|NaA|}KP

is new on the top left node of
Figure 2, and Na is new on the last node of the D strand in Figure 3.

7



When a component occurs new on a regular node, but was a subterm of
some previous node, then the principal executing that strand has done some
cryptographic work to extract it as a new component. The idea of emphasizing
components and the regular nodes at which they occur new is due to [23].

2 Bundle Equivalences and Graph Operations

2.1 Bundle Equivalence

Definition 1 Bundles C,C′ on a strand space Σ are equivalent iff they have
the same regular nodes.

A set φ of bundles is invariant under bundle equivalences if whenever bundles
C and C′ are equivalent, C ∈ φ⇒ C′ ∈ φ.

Agreement and non-injective agreement properties [15, 26, 28] are invariant
under bundle equivalences in this sense. For instance, a non-injective agree-
ment property, expressed in our framework, asserts that whenever a bun-
dle contains a protocol strand (for instance, a responder strand) of a certain
height, then it also contains a matching strand (for instance, an initiator strand
using the same data values) of suitable height. As such, it always concerns
what nodes, representing regular activity of the protocol, must be present in
bundles. Penetrator activity may or may not be present.

Secrecy properties may also be expressed in a form that is invariant under
bundle equivalences. We say (temporarily) that a value t is uncompromised in
C if for every C′ equivalent to C, there is no node n ∈ C′ such that term(n) = t.
In this form, a value is uncompromised if the penetrator cannot extract it in
explicit form without further cooperation of regular strands. When stated
in this form, the assertion that a value is uncompromised is invariant under
bundle equivalences.

2.2 Graph Operations

A graph operation on a bundle C consists of a sequence of one or more of the
following:

(1) Deletion of any set of penetrator strands from the bundle, with the inci-
dent → edges.

(2) Addition of edges n→ n′ with term(n) = +a, term(n′) = −a.
(3) Deletion of edges n→ n′.

8



A graph operation yields a new graph C′. However, the graph C′ is not neces-
sarily a bundle. For instance, if n → n′ is an edge of C with n a penetrator
node, removal of the strand that contains n is a graph operation which causes
the resulting graph to have a negative node with no in-arrow.

A lonely node in a strand space graph is a node with no incoming edge (if the
node is negative) or no outgoing edge (if the node is positive). Lonely negative
nodes are ruled out by the definition of bundle, whereas lonely positive nodes
are allowed. Similarly, a node in a strand space graph is gregarious if it has
more than one edge leaving or entering it. Gregarious negative nodes are ruled
out, whereas gregarious positive ones are allowed. In applying graph operations
on bundles, we must be careful not to create lonely or gregarious negative
nodes.

Proposition 1 Suppose C is a bundle and C′ is obtained from C by a graph
operation such that

(1) For any edge n �→ n′ of C′ there is a sequence of nodes and bundle edges
n = n1 �→ · · · �→ nk = n′ in C.

(2) C′ has no lonely or gregarious negative nodes.

Then C′ is a bundle. Moreover, C′ is equivalent to C and the ordering on C′ is
a restriction of the ordering on C.

Proof. The nodes in any connected sequence in C′ is a subsequence of the
nodes of a connected sequence in C. To show C′ is acyclic, notice that by
assumption 1, for any non-trivial cycle in C′ there is a non-trivial cycle in C.
Thus C′ is a bundle. It is equivalent to C because a graph operation modifies
only the set of penetrator nodes included in the bundle. ✷

3 Redundancies and Paths

We turn our attention to the portions of a bundle that contain penetrator
activity, and the ways that we can simplify those portions.

3.1 Redundancies

Definition 2 A redundancy in a bundle C is any labeled subgraph of C that
has one of the forms given in Figures 4–5.

Each redundancy contains nodes on two penetrator strands, indicated by the
symbol •, and a number of “fringe” nodes indicated by the symbol ◦. The nodes
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E

◦ K → •
D

◦ h → •
�
�

• ← K−1

◦
•
�
�

{|h|}K → •
�
�

sL

•
�
��

h → ◦
sR

Fig. 4. E-D Redundancy

C

◦ g → •
◦ h → •

�
�

S

•
�
�

gh → •
sL

•
�
��

g → ◦
•
�
�

h → ◦
sR

Fig. 5. C-S Redundancy

are connected by inward edges ◦ → •, outward edges • → ◦ and internal edges
• → •. The fringe nodes ◦ may be either regular nodes or penetrator nodes.

The presence of redundancies in a bundle makes it more difficult to see what
the penetrator can actually do, and in particular whether any attacks can
be crafted by a circuitous combination of strands. The purpose of this sec-
tion is to show redundancies can be eliminated without any weakening of the
penetrator’s capability.

Proposition 2 Given any bundle C there exists an equivalent bundle C′ with
no redundancies. Moreover, the penetrator nodes of C′ is a subset of the pen-
etrator nodes of C and the ordering ≺C′ is a restriction of the ordering ≺C. If
there exists n ∈ C such that term(n) = t, then there exists n′ ∈ C′ such that
term(n′) = t.

Proof. Consider each one of the redundancy types shown in Figures 4–5.
Each one of these redundancies is a subgraph of C consisting of two penetrator
strands sL and sR, some arrows into the subgraph and some arrows out of the
subgraph. Notice that by suitably replicating the strand sR in each one of the
redundancy cases, we can assume the positive nodes of sR are not gregarious,
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◦ K → •

◦ h → •
�
�

← K
−1♣ ◦

•
�
�

{|h|}K ♣→
◦h ✲

Fig. 6. E-D Redundancy Elimination

◦ g → •
◦ h → •

�
�

•
�
�

gh♣ →
◦

g

✲

◦
h

✲

Fig. 7. C-S Redundancy Elimination

that is, have exactly one outgoing arrow. For each such subgraph,

(1) Add the edges indicated by the dotted lines as shown in figures 6-7. In
the case of C-S elimination, two new edges are added; in the case of
E-D elimination only one new edge is added. For each such new edge
n → n′, there is clearly a path n �→ n1 �→ · · · �→ nk = n′ in C. Note that
the addition of this edge creates some gregarious positive and negative
nodes. In the next step we will remove the redundant edges leading to
the gregarious negative nodes.

(2) Delete the right penetrator strand sR. As a result of removing sR, those
edges m→ n′ going out of sR are removed as well. In step 1, we added an
arrow into n′ so that removal of m → n′ does not leave us with a lonely
negative node.

(3) As a result of the previous step, some positive nodes may have no outgoing
arrows. These are shown by ♣ in the figure. However, the presence of
lonely positive nodes does not violate the bundle property so no further
action is necessary to deal with these.

Note that the graph operation above satisfies the conditions of Proposition 1.
Hence, the resulting graph is bundle equivalent to C, and its ordering is a
restriction of the ordering of C. Note also that for each of the deleted nodes on
sR, there is another node with the same term that does not lie on sR. ✷
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3.2 Penetrator Paths and Normal Bundles

m⇒+ n means that m,n are nodes on the same strand with n occuring after
m (Definition 18, Clause 4). The notation m �−→ n means:

• either m⇒+ n with term(m) negative and term(n) positive, or else
• m→ n.

A path p through C is any finite sequence of nodes and edges n1 �−→ n2 �−→
· · · �−→ nk. Clearly, n ≺C n′ whenever there is a path n = n1 �−→ n2 �−→
· · · �−→ nk = n′. We assume all paths begin on a positive node, and end on a
negative node.

We refer to the ith node of the path p as pi. The length of p will be |p|, and
we will write �(p) to mean p|p|, i.e. the last node in p.

A penetrator path is one in which all nodes other than possibly the first or
the last node are penetrator nodes. As an example of a penetrator path, in
which the first and last nodes are in fact regular, consider again the partial
bundle shown in Figure 3. The path π =

π1 → π2 ⇒+ π3 → π4 ⇒+ π5 → π6

is a path that traverses penetrator nodes, connecting A’s first transmission
{|NaA|}KP

to B’s first reception {|NaA|}KB
. In contrast to π, the path ψ =

ψ1 → ψ2 ⇒+ π5 → π6

starts on a penetrator node and ends on a regular node. Observe that by our
conventions, ψ3 and ψ4 are well-defined (and equal to π5 and π6 respectively).

In a number of examples in the coming pages, we will use π and ψ as constants
denoting these two particular paths, while p, by contrast, will be used as a
variable ranging over paths in general.

Definition 3 Given a path p, one ⇒+ edge immediately precedes another ⇒+

edge in p iff they are separated in p by a single → edge.

For instance, π2 ⇒+ π3 immediately precedes π4 ⇒+ π5 in π.

Consider a ⇒+-edge between penetrator nodes. There are four penetrator
strand types with a negative node followed by a positive node, namely E, D,
C, and S strands.

Definition 4 A ⇒+-edge is constructive if it is part of a E or C strand. It is
destructive if it is part of a D or if it is part of a S strand.

12



A penetrator node n is initial if it is a K or M node.

Any penetrator path that begins at a regular node contains only construc-
tive and destructive ⇒+-edges, because initial nodes can occur only at the
beginning of a path.

Proposition 3 In a bundle, a constructive edge immediately followed by a
destructive edge has one of the following two forms:

(1) Part of a Eh,K immediately followed by part of a Dh,K strand for some
h,K

(2) Part of a Cg,h immediately followed by part of a Sg,h strand for some g, h.

Proof. This follows immediately from freeness of the message algebra. ✷

Proposition 4 If the bundle C has no redundancies of type C-S and E-D, then
for any penetrator path of C, every destructive edge precedes every constructive
edge.

Proof. If some constructive edge precedes a destructive one, then some con-
structive edge immediately precedes a destructive one. However, if the bundle
has no redundancies, then by Proposition 3, a constructive edge cannot im-
mediately precede a destructive one. ✷

Since the property just introduced is very important, we give it a name, stress-
ing the analogy with Prawitz’s notion of normal derivation [22]:

Definition 5 A bundle C is normal if, for any penetrator path of C, every
destructive edge precedes every constructive edge.

[5] first observed the analogy between penetrator activities and natural de-
duction inferences. By Propositions 2 and 4, we may infer:

Proposition 5 (Penetrator Normal Form Lemma) For any bundle C
there exists an equivalent normal bundle C′.

Moreover, the penetrator nodes of C′ form a subset of the penetrator nodes of
C and the ordering C′ is a restriction of the ordering C. If there exists n ∈ C
such that term(n) = t, then there exists n′ ∈ C′ such that term(n′) = t.

3.3 Rising and Falling Paths

Definition 6 A penetrator path is falling if for all adjacent nodes n �−→ n′
on the path term(n′) @ term(n).
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D

• K−1

→ •
◦ {|h|}K ✲ •

�
�

•
�
�

h→

Fig. 8. Entering a D strand through a key edge

E

• K → •
◦ h ✲ •

�
�

•
�
�

{|h|}K→

Fig. 9. Entering a E strand through a key edge

A penetrator path is rising if for all adjacent nodes n �−→ n′ on the path
term(n) @ term(n′).

The path π from Figure 3 contains a falling subpath π1 �−→ · · · �−→ π4 and
a rising subpath π3 �−→ · · · �−→ π6. The transmission edge π3 → π4 may
be associated with either subpath, or regarded as a bridge between the two
subpaths.

A path containing only destructive edges may not be falling, since a destructive
path may traverse a decryption strand entering through the key transmission
edge (Figure 8). Call the edge labeled K−1 in Figure 8 a D-key edge. The
other incoming edge into a D strand is a D-cyphertext edge.

In a symmetrical way, a constructive path may traverse an encryption strand
entering through the key transmission edge (Figure 9). Call the edge labeled
K in Figure 9 an E-key edge. The other incoming edge into an E strand is an
E-plaintext edge. The path π from Figure 3 traverses no key edges, while path
ψ traverses an E-key edge.

For a constructive path, we are entitled to a stronger conclusion. If p is any
constructive path, then p can traverse a E-key edge only once, along the edge
p1 → p2, and only if term(p1) ∈ K. After that, later nodes must have a
compound term, not an atomic term such as a key.

Proposition 6 A destructive path that enters decryption strands only through
D-cyphertext edges is falling.

A constructive path that enters encryption strands only through E-plaintext

14



edges is rising, and this is the case for any constructive p such that term(p1) �∈
K.

Moreover, the sequence of penetrator strands traversed on a falling path is
constrained by the structure of term(p1). We use the relation t0 @K t, which
means that t0 occurs somewhere in t such that every surrounding encryption
uses a key K ∈ K (Definition 22). Recall that �(p) is the last node on the path
p, i.e. p|p|.

Proposition 7 (1) Suppose that p is a falling penetrator path; suppose pi is
a negative penetrator node; and suppose 1 < i < |p|. Then term(pi) is
either an encryption or a concatenation, and:
(a) If term(pi) = {|h|}K, then pi lies on a D-strand, and term(pi+1) = h;

and
(b) If term(pi) = g h, then pi lies on a S-strand, and either term(pi+1) =
g or term(pi+1) = h.

(2) If pi is a positive node with 1 ≤ i < |p|, then term(pi) = term(pi+1).
(3) Suppose p is a falling penetrator path, and suppose that every D-strand s

that p traverses has key edge K−1, for some K ∈ K. Then term(�(p)) @K
term(p1).

Proof. The assertion for a positive node pi is immediate from the definition
of paths. So consider a negative node pi.

Since i < |p|, there is a node pi+1 on this penetrator path, so pi is a penetrator
node. The strand on which pi lies is neither a K-strand nor an M-strand, as
these lack negative nodes. It is neither a C-strand nor an E-strand because
p is a falling path. Hence only D-strands and S-strands remain, and the rest
follows from the freeness of the message algebra A.

To see that term(�(p)) @K term(p1) when there exists a falling path travers-
ing only D-strands with decryption keys in K−1, consider the strands in p in
reverse order starting at �(p) with term(�(p)). For each S-strand, perform a
concatenation with the term on the other positive node of that strand (i.e. the
positive node not belonging to p). For each D-strand, perform an encryption
with the inverse of the decryption key on that strand. The resulting term is
term(p1). ✷

Hence, as we traverse a falling penetrator path, we take successive subterms of
the term at the start, with each successive strand determined by the topmost
operator of the current term. Observe also that if term(�(p)) = K, then there
must be some i with 1 ≤ i ≤ |p| and term(pi) a component of p1; simply
proceed along the path past all (contiguous) S-strands; if this is �(p) then K
is the component, while otherwise it is some t0 with K @ t0.

15



Regular Constructive

◦ h → •
•
�

Fig. 10. Entry Bridge

Destructive Regular•
•
�
�

h → ◦

Fig. 11. Exit Bridge

Symmetrically, the sequence of penetrator strands traversed on a rising path
is constrained by the structure of term(�(p)), although we will not need this
fact.

One curlicue is useful. A bundle may contain a penetrator D-strand s in which
a key K is used to decrypt {|K|}K−1, thereby obtaining K. Clearly, we may
use a graph operation to splice s out of the bundle, connecting the incoming
key edge with term K to the outgoing plaintext edge with term K.

Proposition 8 If C is any bundle, there is an equivalent bundle C′ containing
no D-strands of the form −{|K|}K−1 ⇒ −K ⇒ +K. The resulting bundle C′

is normal if C is.

3.4 Bridges and Bridge Terms

Of special interest are the message transmission edges that come after all
destructive edges and before all constructive edges in a normal penetrator
path. We call them bridges.

Definition 7 A bridge in a bundle C is a message transmission edge m→ n
embedded in a subgraph of one the types shown in Figures 10–13.

If m→ n is a bridge, then its bridge term is term(m), which equals term(n).

A bridge is simple iff its bridge term is simple, that is, is not of the form g h.

Any edge between regular nodes is an external bridge. The source m of a
bridge m → n is never on a constructive penetrator strand, and the target
n is never on a destructive penetrator strand. The edge π3 → π4 is the only
bridge on our example path π from Figure 3.
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Regular Regular

◦ h → ◦

Fig. 12. External Bridge

Destructive Constructive•
•
�
�

h → •
•
�

Fig. 13. Internal Bridge

Proposition 9 Suppose that C is a normal bundle, and p is any penetrator
path in C. Then p traverses exactly one bridge. Any destructive edge along p
precedes the bridge of p, and any constructive edge on p follows the bridge of
p.

Any bundle C can be replaced by an equivalent bundle C′ in which all bridges
are simple; moreover if C is normal so is C′.

Proof. Consider a bridge ◦ g h−→ ◦ that transmits a concatenated term g h
from a node on a destructive penetrator node or regular node to a constructive
or regular node. Replace the bridge by a graph consisting of two bridges:

◦ g h → •
•
�
�

g → •
•
�
�

h → •
�
�

•
�
�

g h → ◦
These graph operations do not create lonely or gregarious negative nodes and
do not introduce cycles in the graph. Moreover if the original bundle is normal,
that is contains no C-S or E-D redundancies, the new bundle is also normal.
✷

By this proposition, there is a function pbt(·) from paths to terms that is
well-defined on every penetrator path in normal bundles. Given a penetrator
path p, pbt(p) is the path bridge term of p, which is the bridge term of the
(unique) bridge on p. We may assume that pbt(p) is always simple, which is
to say either an atomic value or an encryption.

The bridge π3 → π4 carries the term NaA, so it is not simple. Applying the
construction just given in the proof, we obtain two paths; they share their
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nodes except those bordering the bridges. One path has bridge term Na, and
the other has bridge term A.

A bundle with simple bridges is a kind of worst case scenario, because the pen-
etrator separates and re-concatenates every message between regular nodes.
However, simple bridges lead to simple proofs.

3.5 Transforming Edges and Transformation Paths

Given a test of the form n⇒+ n′, our strategy for proving the authentication
test results is to consider the paths leading from n to n′. Because there is a
value a originating uniquely at n, and it is received back at n′, there must
be a path leading from n to n′ (apart from the trivial path that follows the
strand from n to n′). Moreover, since a is received in a new form at n′, there
must be a step along the path that changes its form; this is a transforming
edge. The incoming and outgoing authentication test results codify conditions
under which we can infer that a transforming edge lies on a regular strand.

Our proofs focus on the transformation paths leading from n to n′ that keep
track of a “relevant” component containing a. The relevant component changes
only when a transforming edge is traversed, and a occurs in a new component.

We regard the edge n⇒+ n′ as a transformed edge, because the same value a
occurs in both nodes, but node n′ contains a in transformed form.

Definition 8 The edge n1 ⇒+ n2 is a transformed edge for a ∈ A [respec-
tively, a transforming edge for a ∈ A] if n1 is positive and n2 is negative
[respectively, n1 is negative and n2 is positive], a @ term(n1), and there is a
new component t2 of n2 such that a @ t2.

Thus, a transformed edge emits a and later tests for its presence in a new
form. A transforming edge receives a and later emits it in transformed form.
We have chosen to interpret a “form” in which a occurs as a component in
which it occurs. Considering again si ∈ NSInit[A,B,Na, Nb], the first two
nodes

+{|NaA|}KB
⇒ −{|NaNb|}KA

are a transformed edge for Na, while the second and third nodes

−{|NaNb|}KA
⇒ +{|Nb|}KB

are a transforming edge for Nb. Conversely, for sr ∈ NSResp[A,B,Na, Nb], the
first two nodes are a transforming edge for Na, while the second and third
nodes are a transformed edge for Nb.
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Definition 9 A transformation path is a path for which each node ni is la-
belled by a component Li of ni in such a way that Li = Li+1 unless ni ⇒+ ni+1

and Li+1 is new on the strand of ni+1.

We can regard a transformation path as a sequence of pairs (ni,Li) consisting
of a node and a component Li of that node. If Li �= Li+1 and a @ Li and
a @ Li+1, then ni ⇒+ ni+1 is a transforming edge (Definition 8) for a. This is
the explanation for the name, transformation path. The sequence

〈 (π1, {|NaA|}KP
), (π2, {|NaA|}KP

), (π3, Na),

(π4, Na), (π5, {|NaA|}KB
), (π6, {|NaA|}KB

) 〉

is a transformation path for Na. We could also choose a longer example from
Figures 2 and 3, because the path p need not be a penetrator path, and need
not terminate when a regular node is reached.

By inspecting the forms of penetrator strand (Definition 23), we observe:

Proposition 10 If (p,L) is a transformation path in which Li �= Li+1, and pi
is a penetrator node, then pi ⇒+ pi+1 lies either on a D-strand or an E-strand.

The next proposition states that given a node such as π6, it is possible to
construct a transformation path like the one we have just given, leading back
to a node at which Na originates.

Proposition 11 Suppose C is a bundle in Σ with n′ ∈ C, and suppose a @ t
where t is a component of n′. There is a transformation path p in C such that
a originates at p1, �(p) = n′, L|p| = t, and a @ Li for all i.

We may choose p so as not to traverse the key edge of a D- or E-strand.

Proof. We will construct the path p backwards. Let n1 = n′, let L1 = t, and
suppose that (inductively) we have a transformation path

(nk+1,Lk+1) �−→ (nk,Lk) �−→ · · · �−→ (n1,L1)

such that a @ Lj for all j in the path. If a originates at nk+1 then p is complete.
So suppose nk+1 does not originate at nk+1.

If nk+1 is negative, then C contains a unique nk+2 such that nk+2 → nk+1.
Extend p backwards to (nk+2,Lk+1).

Suppose nk+1 is positive, and Lk+1 is new. There exists a node nk+2 ⇒+

nk+1 such that a @ term(nk+2), since a does not originate at nk+1. Extend p
backwards to contain some such nk+2 and let Lk+2 be any component of nk+2

which contains a.
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If Lk+1 is not new, then there is a node nk+2 ⇒+ nk+1 such that term(nk+2)
has component Lk+1. Extend p backwards to (nk+2,Lk+1).

Observe that if nk+1 is the positive (ciphertext) node on a E-strand, then we
may select the plaintext node as nk+2, because it does contain a, and the
ciphertext is new. If nk+1 is the positive (plaintext) node on a D-strand, then
we may select the ciphertext node as nk+2, because it does contain a, and the
plaintext is new (by Proposition 8). Thus, p never traverses a key edge.

Because C is a well-founded relation (Proposition 27) and i < j implies
nj ≺C ni, eventually nj is a node at which a originates. ✷

Proposition 12 Suppose p is a transformation path such that a @ Li for
every i and L1 �= Ln. Then p has a transforming edge for a.

Proof. Argue by contradiction. If there is no transforming edge for a in
the path, then for every edge (pi,Li) ⇒+ (pi+1,Li+1) in p, there is no new
component in pi+1 containing a. By definition of transformation path, this
means Li = Li+1. So in particular, L1 = Ln. ✷

In the case of our path π, the edges π2 ⇒ π3 and π4 ⇒ π5 are transforming
edges. Note that π3 lies on a D strand and π5 lies on a E strand; they are
the values pβ and pα mentioned in the next proposition (respectively). The
proposition also entails that the distinguished component L1, which may be a
subterm of term(p1), stands on its own as the whole of some message term(pβ).

Proposition 13 Suppose C is a normal bundle.

(1) Let (p,L) be a transformation path in C such that p is a penetrator path
and term(p1) is simple. There is a smallest index α such that term(pα) =
Li = L|p|, for all i such that α ≤ i ≤ |p|.

Moreover, if L is not constant then pα is the positive node of an E-
strand.

(2) Let (p,L) be a transformation path in C such that p is a penetrator path
and term(�(p)) simple. Either L is constant or there is a smallest in-
dex β such that Lβ �= L1. The positive node pβ lies on a D-strand and
term(pβ−1) = Lβ−1.

In either case, there is an index β such that term(pβ) = L1.

Proof. New components of penetrator strands occur only on D-strands or
E-strands. Since p is a penetrator path, Li+1 �= Li if and only if pi+1 is the
positive node of an E-strand or the positive node of a D-strand. If pi+1 is the
positive node of a E-strand, then term(pi+1) is an encrypted term and therefore
term(pi+1) has only one component. Therefore, term(pi+1) = Li+1. If pi+1 is
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Fig. 14. An Inefficient Bundle for a Fictitious Protocol

the positive node of a D-strand, then pi is an encrypted term so that similarly
term(pi) = Li.

Notice that if L is constant and term(pi) is simple, then term(pi) consists of
a single component, and Li = term(pi). Hence, L1 = L|p| = term(pi). ✷

3.6 Efficient Bundles

Definition 10 A bundle is efficient if and only if, for every node m and neg-
ative penetrator node n, if every component of n is a component of m, then
there is no regular node m′ such that m ≺ m′ ≺ n.

We call a bundle of this kind efficient because the penetrator does the most
with what he has rather than making use of additional regular nodes.

The bundles we show in Figure 1 and Figures 2–3 are efficient. Whenever the
penetrator node handles a term, there is no earlier node that has all the same
components, and a regular node has been traversed in between. However, in
the case of the nonsensical variant of the Needham-Schroeder protocol shown
in Figure 14, the edge marked ♣ would need to be removed, and replaced
with the dashed diagonal. The negative penetrator node n must not receive
its term from the third initiator node, when it can be obtained directly from
the first initiator node. We can always replace a bundle by an efficient one,
and we can do so without interfering with the Normal Form Lemma:

Proposition 14 Any bundle C is equivalent to an efficient bundle C′. C′ may
be chosen such that n ∈ C implies n ∈ C′. If a bundle is efficient, then it has
an equivalent normal bundle which is also efficient.

Proof. Consider a negative penetrator node n and a node m such that every
component of n is a component of m. We show how to modify C by graph op-
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erations, so that in the resulting bundle there will be no regular node between
m and n in the ordering ≺.

For each component t0 of m, add an arrow m→ into a cluster St0 of S strands
to extract the term t0. This is possible since t0 @∅ term(m). We refer to the
positive S node whose term is t0 as m′

t0
.

We can now add arrows from the nodes m′
t0

into a cluster of C nodes from
which emerges an arrow whose term is term(n). Observe that we have not
omitted nodes, but have simply added penetrator nodes on S and C strands.

Since n is negative, there is a unique incoming arrow → n in C. By graph
operations we can replace → n with the arrow emerging from the cluster of
C strands. The resulting graph has no cycles, and no lonely or gregarious
negative nodes are created by this graph operation. In the new bundle, the
nodes m and n are not connected by any path which has an intermediate
regular node. These operations add a new set of nodes A to the graph, but
each of these new nodes can only be reached (from below) by paths which
traverse m.

To show that any efficient bundle has an equivalent normal efficient bundle,
it suffices to show that the graph operations used to eliminate redundancies
in Proposition 2 preserve efficiency. The only graph operation which might
destroy efficiency is adding a message transmission edge between two nodes.
However, these nodes are connected in the original bundle by a path which
only traverses penetrator nodes. Thus no new paths connecting a regular node
to a shadowed node can appear in the modified graph. ✷

In efficient bundles, no transformation path ever needs to revisit the same dis-
tinguished component that occurs in an “earlier” transformation path (where
“earlier” means that there is a regular node between the end of one and the
beginning of the other):

Proposition 15 Suppose C is a normal efficient bundle and (p,L) and (p′,L′)
are transformation paths in C. Assume p is a penetrator path which starts at a
simple term, p′ is a penetrator path which ends at a simple term, and there is
some regular node m such that �(p) ≺ m ≺ p′1. Then for all i with 1 ≤ i ≤ |p|
and j with 1 ≤ j ≤ |p′|, Li �= L′

j.

Proof. Choose i, j; by Proposition 13, there are indices α ≤ i and β ≥ j
such that term(pα) = Li and term(p′β) = L′

j. In particular, pα ≺ m ≺ p′β
and term(pα), term(p′β) both have single components. Therefore, by bundle
efficiency, term(pα) �= term(p′β), or equivalently Li �= L′

1. ✷
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4 A Method for Authentication

In this section we describe our method for establishing authentication results.
We first show how to establish whether keys are accessible to the penetrator
or not (Section 4.1). We define three kinds of authentication tests, and state
a theorem about each one, showing what other regular nodes must exist in a
bundle, if that bundle contains an example of an authentication test. We will
illustrate the first authentication test result using the Needham-Schroeder and
Needham-Schroeder-Lowe protocols. Proofs are gathered in Section 4.3, after
the main ideas have been explained and illustrated.

In the next section (Section 5), we will apply these authentication test theo-
rems to additional examples. A surprising amount of protocol verification and
discovery of counterexamples can be derived directly from the results of the
current section.

4.1 Penetrable Keys and Safe Keys

Given a strand space Σ, we can inductively define the set of keys that may
become known to the penetrator. We use the relation @K defined in Defini-
tion 22; t0 @K t means that t0 occurs as a subterm of t in a position where all
encryptions surrounding it use keys K ∈ K. Thus, either t can be constructed
from t0 simply by (possibly repeated) concatenation, or else t can be written
in the form

· · · {| · · · t0 · · · |}K · · ·
where K ∈ K and the dots hide only concatenations and other encryptions
with keys in K. The set K−1 means the set of inverses of keys in K. For instance,
let S = {KB} = {K−1

B }−1. Then Na @S Nb {|NaA|}KB
. Moreover, Nb @∅

Nb {|NaA|}KB
.

In the base case of this definition we refer to KP, which is the set of keys known
to the penetrator initially, apart from any protocol activity (Definition 23).

Definition 11 Let P0 = KP.

Let Pi+1 = Pi ∪ Y , where K ∈ Y if and only if there exists a positive regular
node n ∈ Σ and a term t such that:

(1) t is a new component of n, and
(2) K @Pi

−1 t

P =
⋃

i Pi.
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Thus, either a penetrable key is already penetrated (KP), or else some regular
strand puts it in a form that could allow it to be penetrated, because for
each key protecting it, the matching decryption key is already penetrable.
The justification for this definition is that any key that becomes available to
the penetrator in any bundle is in fact a member of P.

Proposition 16 Let C be a bundle with n ∈ C and term(n) = K. Then
K ∈ P.

The proof is contained in Section 4.3.1. P is a conservative approximation.
It may be larger than the set of keys that the penetrator can really capture,
because the strand that would put the key in danger may not be contained in
any bundle.

Definition 12 Let S0 be the set of keys K such that K �∈ KP and there is no
positive regular node n ∈ Σ and term t such that t is a new component of n
and K @ t.

Let Si+1 be the set of keys K such that K �∈ KP, and for every positive regular
node n ∈ Σ and new component t of n, every occurrence of K in t lies within
an encryption using some key K0 where K−1

0 ∈ Si:

· · · {| · · · K · · · |}K0 · · ·

S =
⋃

i Si. When K ∈ S, we say that K is safe in Σ.

Evidently, the set of safe keys is disjoint from P. However, there are strand
spaces Σ in which there are keys K such that K �∈ P ∪ S.

In practice, protocol secrecy goals frequently amount to showing that certain
keys are in either S0 or S1. Larger values of i seem rarely to occur in these
protocols. Showing that a private key or a long-term symmetric key is in S0

typically reduces to checking that it is assumed not to be in KP, because
protocols generally avoid emitting terms containing these keys.

For instance, in the Needham-Schroeder protocol, if n is a regular node, then
K �@ term(n). Hence, S0 = K\KP, which says that any key not initially known
to the penetrator is permanently safe.

Many protocols expect session keys to be generated by a key server, which
sends them encrypted in the long-term keys of two principals, and no principal
ever re-encrypts a session key under a new key. In a particular session, a session
key K may be sent encrypted with long term keys not in KP (or, if they are
asymmetric, their inverses are not in KP). If the server never re-sends the same
session key K in a different session, we can infer that K ∈ S1. This idea is
illustrated in Sections 5.1 and 5.2.
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There also exist protocols in which the session key is translated, in the sense
that it is sent out originally encrypted with one key and is later re-encrypted
by another principal under a new key. These protocols can also be correct,
although they demand special care. The TMN protocol is a (flawed) exam-
ple [24]. In the case of a correct protocol of this form, it may be necessary
to show that the session key is in S2. However, the fact that S0 and S1 cover
typical protocols makes this method for proving secrecy particularly easy to
use.

One can also prove that a non-key data value such as a nonce is kept secret
in a protocol; one simply shows that every regular component containing it is
of the form {|h|}K where K−1 ∈ Si. Again, typically i = 0 or 1. We call t a
regular component if there is a regular node n such that t is a component of
term(n).

4.2 The Authentication Tests

Fix some strand space Σ. We identify segments of regular strands called tests
whose presence will guarantee the existence of other regular strands in the
bundle; they are strands with transforming edges operating on the test com-
ponent.

Definition 13 t = {|h|}K is a test component for a in n if:

(1) a @ t and t is a component of n;
(2) The term t is not a proper subterm of a component of any regular node
n′ ∈ Σ.

The edge n0 ⇒+ n1 is a test for a if a uniquely originates at n0 and n0 ⇒+ n1

is a transformed edge for a.

Clause 2 in the definition of test component requires test component not to
occur as a more nested, proper subterm (Definition 21) of a component of a
regular node, because then the test component might be transformed “inad-
vertently,” so to speak, when the larger unit is processed in some way. In that
case, the penetrator could benefit from building a larger term to send to a
regular participant, who might then emit some new message of value to the
penetrator.

In Needham-Schroeder, if sr ∈ NSResp[A,B,Na, Nb], then {|NaNb|}KA
is a

test component for Nb in 〈sr, 2〉, because term(〈sr, 2〉) = {|NaNb|}KA
and this

component does not occur as a proper subterm of any other regular node. As-
suming that the responder B chooses Nb to be uniquely originating at 〈sr, 2〉,
the edge 〈sr, 2〉 ⇒ 〈sr, 3〉 is a test for Nb.
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✛
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new

K �∈ P

� means a originates uniquely here

t means t is a component of this node

Fig. 15. Outgoing and Incoming Tests

Tests can use their test components in at least two different ways. If the
uniquely originating value is sent in encrypted form, and the challenge is to
decrypt it, then that is an outgoing test. If it is received back in encrypted
form, and the challenge is to produce that encrypted form, then that is an
incoming test. These two kinds of test are illustrated in Figure 15.

Definition 14 The edge n0 ⇒+ n1 is an outgoing test for a in t = {|h|}K if
it is a test for a in which: K−1 �∈ P; a does not occur in any component of n0

other than t; and t is a test component for a in n0.

The edge n0 ⇒+ n1 is an incoming test for a in t1 = {|h|}K if it is a test for
a in which K �∈ P and t1 is a test component for a in n1.

If K−1
A �∈ KP (hence K−1

A ∈ S0), then the edge 〈sr, 2〉 ⇒ 〈sr, 3〉 is an outgoing
test for Nb in {|NaNb|}KA

. It is not an incoming test for Nb in {|Nb|}KB
, because

the public key KB is presumably in KP.

The three authentication test results that follow give a powerful method for
establishing the authentication goals of protocols. The results with their proofs
appear in Section 4.3.2 as Propositions 19–21.
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Fig. 16. Authentication Provided by an Outgoing Test

4.2.1 The Outgoing Authentication Test

Authentication Test 1 Let C be a bundle with n′ ∈ C, and let n ⇒+ n′ be
an outgoing test for a in t.

(1) There exist regular nodes m,m′ ∈ C such that t is a component of m and
m⇒+ m′ is a transforming edge for a.

(2) Suppose in addition that a occurs only in component t1 = {|h1|}K1 of m′,
that t1 is not a proper subterm of any regular component, and that K−1

1 �∈
P. Then there is a negative regular node m′′ with t1 as a component.

The meaning of this assertion is illustrated in Figure 16. In this diagram, the
two nodes marked ◦ represent n and n′. The result assumes that a originates
uniquely here (shown by the �), and that the decryption key K−1 is safe. The
diagram does not represent the assumption that t not be a proper subterm
of any regular component, which being non-local is hard to display. The test
establishes that C also contains regular nodes m and m′ (marked • at right)
with a transforming edge for a. With the assumptions on t1 given in clause 2,
there is also a negative regular node m′′, shown with a • on the bottom line,
of which t1 is a component.

4.2.1.1 Outgoing Tests: The Needham-Schroeder Illustration We
may illustrate the outgoing authentication tests by Needham-Schroeder. As-
sume that C is a bundle, and the C-height of sr ∈ NSResp[A,B,Na, Nb] is 3,
which means that all three nodes of sr belong to C. Assume that K−1

A �∈ KP.
Finally, assume that Nb originates uniquely, and Nb �= Na (which together
mean that Nb originates uniquely at 〈sr, 2〉).

Hence, the edge 〈sr, 2〉 ⇒ 〈sr, 3〉 is an outgoing test for Nb in {|NaNb|}KA
.

By Authentication Test 1, there exist regular nodes m,m′ ∈ C such that
{|NaNb|}KA

is a component of m and m ⇒+ m′ is a transforming edge for a.
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The only negative regular node containing a component of this form is 〈si, 2〉
for si ∈ NSInit[A,B′, Na, Nb] and some responder B′. Thus, the transforming
edge m⇒+ m′ must be 〈si, 2〉 ⇒+ 〈si, 3〉, and si has C-height 3.

Unfortunately, we have not proved that si ∈ NSInit[A,B,Na, Nb] for the ex-
pected responder B, rather than some other responder B′. And Figure 2 is
a counterexample in which B′ = P �= B. Hence we have uncovered a limi-
tation in the authentication achieved by Needham-Schroeder, first noted by
Lowe [12, 13], which led Lowe to amend the protocol to contain the responder’s
name B in the second message {|NaNbB|}KA

.

4.2.1.2 Needham-Schroeder-Lowe Let us next consider a strand space
Σ in which the regular strands are:

• For si ∈ NSLInit[A,B,Na, Nb], traces of the form:

〈+{|NaA|}KB
, −{|NaNbB|}KA

, +{|Nb|}KB
〉

• For sr ∈ NSLResp[A,B,Na, Nb], traces of the form:

〈−{|NaA|}KB
, +{|NaNbB|}KA

, −{|Nb|}KB
〉

To be precise, let Tname be a distinguished set within A with Tname ⊂ T.
NSLInit[A,B,Na, Nb] and NSLResp[A,B,Na, Nb] are empty unless A,B ∈
Tname, Na, Nb ∈ T but Na, Nb �∈ Tname. In addition, we assume that the set
of responder strands NSLResp[A,B,Na, Nb] is empty unless Nb �= Na. This
proof of the correctness of the protocol depends on the assumption that the
“public key of” mapping f : A �→ KA is injective.

Assume that C is a bundle, and the C-height of sr ∈ NSLResp[A,B,Na, Nb]
is 3. Assume that K−1

A �∈ KP. Finally, assume that Nb originates uniquely, and
Nb �= Na (which together mean that Nb originates uniquely at 〈sr, 2〉).

As before, it follows that the edge 〈sr, 2〉 ⇒ 〈sr, 3〉 is an outgoing test for Nb in
{|NaNbB|}KA

. By Authentication Test 1, there exist regular nodes m,m′ ∈ C
such that {|NaNbB|}KA

is a component of m and m⇒+ m′ is a transforming
edge for a. The only negative regular node containing a component of this
form is 〈si, 2〉 for si ∈ NSLInit[A,B,Na, Nb].

Thus, the transforming edge m ⇒+ m′ must be 〈si, 2〉 ⇒+ 〈si, 3〉, and si
has C-height 3. This proves that the responder successfully authenticates the
initiator in Needham-Schroeder-Lowe.

We will also prove the initiator’s authentication guarantee. The proof is very
similar, except that it is necessary to use the second part of Authentication
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Test 1 as well as the first part of it. We include it to illustrate the use of this
proof method.

Let C be a bundle in Σ, and si be an initiator’s strand in NSLInit[A,B,Na, Nb]
with C-height 3. Assume K−1

A , K
−1
B �∈ KP, and suppose that Na is uniquely

originating.

The edge 〈si, 1〉 ⇒ 〈si, 2〉 is an outgoing test for Na in {|NaA|}KB
, so it follows

(by Authentication Test 1) that there is a regular transforming edge m⇒+ m′

in C with {|NaA|}KB
a component of the negative node m. This implies that

m,m′ are the first two nodes of a responder strand sr ∈ NSLInit[A,B,Na, N ].
In this step, we used the assumption that K−1

B �∈ KP, from which it follows
that K−1

B �∈ P.

However, we cannot yet be sure whether N = Nb. To infer that B has sent out
the same nonce Nb that A eventually receives, we use Part 2 of Authentication
Test 1. It implies that {|NaN B|}KA

is a component of some negative regular
node m′′. However, m′′ can only be 〈s′i, 2〉 for some s′i ∈ NSLInit[A,B,Na, N ],
since only the second node of an initiator strand receives a component of this
form. By the form of an initiator strand, Na originates at 〈s′i, 1〉. Since Na is
uniquely originating, it follows that 〈s′i, 1〉 = 〈si, 1〉, so s′i = si and N = Nb. In
this step, we used the assumption that K−1

A �∈ KP, from which it follows that
K−1

A �∈ P.

Thus, we have shown that C contains a responder strand

sr ∈ NSLResp[A,B,Na, Nb]

with C-height 2. This proves that the initiator successfully authenticates the
responder in Needham-Schroeder-Lowe.

4.2.2 The Incoming Authentication Test

An authentication test result for incoming tests can be used to infer the exis-
tence of a regular transforming edge in protocols in which a nonce is emitted
in plaintext, for instance as a challenge, and later received in encrypted form.

Authentication Test 2 Let C be a bundle with n′ ∈ C, and let n ⇒+ n′ be
an incoming test for a in t′. Then there exist regular nodes m,m′ ∈ C such
that t′ is a component of m′ and m⇒+ m′ is a transforming edge for a.

The meaning of this assertion is illustrated in Figure 17 using the same con-
ventions as in Figure 16. We will apply the incoming authentication test in
Sections 5.2 and 5.3.
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Fig. 17. Authentication Provided by an Incoming Test

Although in this paper we will make no use of it, the outgoing and incoming
authentication tests also establish an ordering on the nodes, as n occurs before
m and m′, while n′ occurs after. The nodes are ordered n ≺ m ≺ m′ ≺ n′ in
the causal ordering given in Definition 20. The principal executing n and n′

can regard a session key generated at m′ as “fresh,” because it was created
more recently than the beginning of his current run.

The authentication tests are also valid when n and n′ are not actually on the
same strand, but n is a node known to be in a bundle and to have uniquely
originated the test value a, and n′ is a node on a different strand that later
receives a in transformed form.

4.2.3 The Unsolicited Authentication Test

The authentication property achieved by an unsolicited test is less informative,
but frequently useful, for instance when a key server authenticates its clients.
We will illustrate authentication via unsolicited tests in Sections 5.1–5.2.

Definition 15 A negative node n is an unsolicited test for t = {|h|}K if t is
a test component for any a in n and K �∈ P.

Authentication Test 3 Let C be a bundle with n ∈ C, and let n be an un-
solicited test for t = {|h|}K. Then there exists a positive regular node m ∈ C
such that t is a component of m.

4.2.4 Usage of Authentication Tests

When asymmetric cryptography is in use, incoming and outgoing tests are
used in different ways, as an outgoing test requires that K−1 �∈ P, while an
incoming test requires that K �∈ P.

An outgoing test can be used when the secrecy of the uniquely originating
value must be preserved. In that case, K is the public key of the intended
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interlocutor, so that K−1 �∈ P (unless the private key has been compromised
somehow). This method is used in Needham-Schroeder, where Na is transmit-
ted encrypted in the public key of the responder, and returned encrypted with
the public key of the initiator. Nb is treated dually.

An incoming test may be used when the secrecy of the value is not important.
Protocols in which the interlocutor proves its presence by signing a freshly
presented value with a private key use an incoming test.

When symmetric cryptography is in use, K−1 = K, so we do not have this
contrast. Indeed, in many cases the test edge has the form {|t|}K ⇒+ {|t′|}K ,
where K is a long-term shared key and the uniquely originating valueN is con-
tained in both t and t′. Frequently, t′ also contains a fresh session key. In these
cases, we may regard the test edge as an outgoing test or an incoming test;
both definitions apply. The Otway-Rees protocol is an example (Section 5.1).
Below, we choose arbitrarily to regard it as an outgoing test.

Protocols using symmetric cryptography that do not safeguard the secrecy of
the uniquely originating value may use a test edge that is either an outgoing
test or an incoming test (but not both). The edge is an outgoing test if the
challenge value N is transmitted encrypted and the interlocutor proves its
presence by decrypting it. In this case, the edge has the form {|t|}K ⇒+ N ,
where N @ t. We have not illustrated a protocol of this kind here.

The edge is an incoming test if it has the form N ⇒+ {|t|}K , and Neuman-
Stubblebine illustrates this case (Section 5.2), as does the Woo-Lam protocol
(Section 5.3).

An unsolicited test is the only way for a key server to authenticate the prin-
cipals that request a key from it. This is the primary (though not exclusive)
reason why it occurs in protocols using symmetric cryptography.

4.3 Proving the Method for Authentication Correct

In this section we will justify our method for establishing authentication re-
sults. We first prove Proposition 16, justifying our treatment of secrecy. We
then prove theorems establishing the three kinds of authentication test which
so many protocols use. Each authentication test establishes the existence of
regular nodes, typically forming a transforming edge (Section 4.3.2).

31



4.3.1 Keys Available to the Penetrator are Penetrable

Proposition 17 Let C be a bundle with n ∈ C and term(n) = K. Then
K ∈ P.

Proof. By Propositions 5 and 14, we may assume that C is normal and
efficient. We argue by induction on the well-founded relationC. Our induction
hypothesis is that, for all n′ ≺C n, term(n′) ∈ K implies term(n′) ∈ P.

By Proposition 11, we may let (p,L) be a transformation path such that
�(p) = n, K originates at p1, and K @ Li for all i with 1 ≤ i ≤ |p|. If |p| = 1
and n is a penetrator node, then n is a K node, so K ∈ KP. Otherwise, because
C is normal and efficient, p1 is not a penetrator node (which could only be a
K node).

Since p1 is a regular node, there are regular nodes on p, and we may let pλ
be the last regular node on p. Since C is normal and term(�(p)) is an atomic
term, the penetrator path

pλ �−→ · · · �−→ �(p)

is a falling path; by Proposition 11 it traverses no D strand key edges.

By the induction hypothesis, each time p traverses a D strand s from ciphertext
node to plaintext node, then the key edge on s contains a key K0 ∈ P. By
Proposition 7, K @P−1 Lλ, where Lλ is the distinguished component of pλ. To
show that K ∈ P, we need only show that Lλ occurs new on some positive
regular node.

Let κ be the least index such that Li = Lλ for all i for κ ≤ i ≤ λ. If pκ is a
regular node, then Lλ is a new component of pκ by the choice of κ. However,
if pκ is a penetrator node, then it lies either on a D or on a E strand, either
of which has a simple node. However, by Proposition 15, this contradicts the
assumption that C is efficient. ✷

4.3.2 Proofs of the Authentication Tests

A regular component is a term that is a component of some regular node.

Proposition 18 Suppose (p,L) is a transformation path traversing no key
edges such that p1 and �(p) are regular and L1 �= L|p|.

(1) Let L1 be of the form {|h1|}K1. Suppose that L1 is not a proper subterm
of any regular component, and suppose that K−1

1 �∈ P.
If α is the smallest index such that Lα �= Lα+1, then pα is regular.

Moreover, pα ⇒+ pα+1 is a transforming edge.
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(2) Let L|p| be of the form {|hλ|}Kλ
. Suppose that L|p| is not a proper subterm

of any regular component, and suppose that Kλ �∈ P.
If α is the largest index such that Lα �= Lα−1, then pα is regular.

Moreover, pα−1 ⇒+ pα is a transforming edge.

Proof. We prove item 1. The proof of 2 is analogous. Suppose pα is not
regular. Then pα ⇒+ pα+1 lies either on a D-strand or an E-strand.

In the D-strand case term(pα) = {|h1|}K1. But then the key edge contains K−1
1 ,

which by Proposition 17 entails K−1
1 ∈ P.

So suppose that pα ⇒+ pα+1 lies on an E-strand, in which case Lα is a proper
subterm of Lα+1 = term(pα+1). Since C is normal and pα ⇒+ pα+1 is con-
structive, every penetrator edge between pα and the next regular node pβ on
p, which exists since �(p) is regular, is constructive.

By Proposition 6, the path pα �−→ . . . �−→ pβ is rising, so L1 = Lα is a proper
subterm of Lα+1 which in turn is a subterm of term(pβ). This contradicts the
assumption that L1 is not a proper subterm of any regular component.

pα ⇒+ pα+1 is a transforming edge because Lα+1 is a new component on the
strand of pα+1. ✷

Proposition 19 Let C be a normal bundle with n′ ∈ C, and let n ⇒+ n′ be
an outgoing test for a in t. Then there exist regular nodes m,m′ ∈ C such that
t is a component of m and m⇒+ m′ is a transforming edge for a.

Suppose in addition that a occurs only in component t1 = {|h1|}K1 of m′.
Suppose that t1 is not a proper subterm of any regular component, and suppose
that K−1

1 �∈ P. Then there is a negative regular node with t1 as a component.

Proof. Because n⇒+ n′ is a transformed edge for a, there is a new compo-
nent t′ of n′ with a @ t′.

By Proposition 11, there is a transformation path (p,L) in C with p1 = n,
�(p) = n′, L|p| = t′, and a @ Li for all i. Since t′ is new in n′, L1 �= t′. In fact,
because a occurs in no component of n other than t, L1 = t. In particular,
L1 �= L|p|.

By the first part of Proposition 18, the smallest index α such that Lα �= Lα+1

is such that pα is regular. Moreover, pα ⇒+ pα+1 is a transforming edge. It
follows that t = L1 = Lα is a component of m = pα.

Consider now the additional assumptions on the components of m′ = pα+1.
Since Lα+1 is a component of term(m′) that contains a as subterm and a
occurs only in component t1 = {|h1|}K1, Lα+1 = t1.
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If t1 = t′, then n′ itself is a negative regular node with t1 as a component.
Otherwise, apply Proposition 18 again to conclude that smallest index β >
α + 1 such that Lβ �= Lβ+1 is such that pβ regular. Now t1 = Lα+1 = Lβ is a
component of pβ. ✷

Proposition 20 Let C be a normal bundle with n′ ∈ C, and let n ⇒+ n′ be
an incoming test for a in t′. Then there exist regular nodes m,m′ ∈ C such
that t′ is a component of m′ and m⇒+ m′ is a transforming edge for a.

Proof. By Proposition 11, there is a transformation path (p,L) in C with
p1 = n, �(p) = n′, L|p| = t′, and a @ Li for all i. Since t′ is new in n′, L1 �= t′.
In particular, L1 �= L|p|.

By the second part of Proposition 18 , the largest index α such that Lα �= Lα−1

is such that pα−1 is regular. Moreover, pα−1 ⇒+ pα is a transforming edge. In
particular t′ = L|p| = Lα is a component of m′ = pα. ✷

Proposition 21 Let C be a normal bundle with n ∈ C, and let n be an un-
solicited test for t = {|h|}K. Then there exists a positive regular node m ∈ C
such that t is a component of m.

Proof. By Proposition 11, there is a key edge free transformation path (p,L)
in C with p1 = n, �(p) = n′, L|p| = t, t @ Li for all i and such that t originates
at p1.

Since t originates at p1, p1 is a positive node. We claim p1 is a regular node.
Suppose otherwise. Since t @ pk, pk is neither an M-node nor a K-node. Since
t originates at p1, p1 cannot be a S-node, a C-node nor a D-node.

If p1 is a E-node, then p1 is the positive ciphertext (last) node on a E-strand.
Since K �∈ P, t is a proper subterm of term(p1). Hence t is a subterm of the
plaintext (first) node on the strand, so t cannot originate at p1 in this case
either.

Therefore, p1 must be a regular node as claimed. By the definition of test com-
ponent, t is not a proper subterm of any component of p1, so t is a component
of p1. ✷

5 Protocol Correctness and Protocol Failure

In this section we apply the authentication theorems of Section 4.2 to sev-
eral additional examples. They are the Otway-Rees protocol [19, 1, 26], the
Neuman-Stubblebine protocol [18, 25], and the Woo-Lam protocol [27, 29].
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We do so to illustrate the ease and directness with which these theorems lead
to authentication results.

It is remarkably easy to find the outgoing, incoming, and unsolicited tests
that provide a protocol’s authentication guarantees, assuming that the pro-
tocol does not allow its test components to occur in nested contexts. That
would violate Clause 2 of the definition of test component (Definition 13).
The method works for public-key protocols, and for shared symmetric key
protocols also.

In the Otway-Rees protocol, each of the initiator and the responder uses an
outgoing test to authenticate a server strand. The server uses an unsolicited
test to establish that the initiator and responder have each sent a message.

The Neuman-Stubblebine protocol uses a combination of incoming tests and
unsolicited tests. It is a two-part protocol: in Part I the initiator and respon-
der use a key distribution server to authenticate one another and acquire a
session key. In Part II the key distribution server is not involved; the ini-
tiator re-presents a ticket obtained in a run of Part I, and the initiator and
responder re-authenticate one another. Part I is valid in itself [25] (ignoring an
implausible type-flaw attack [11]). Part II is flawed, both in itself [11] and in
undermining the guarantees that Part I provides in isolation [25]. We will use
the authentication test results to explain both why Part I works in isolation,
and also why the addition of Part II undermines its guarantees.

5.1 The Otway-Rees Protocol

The Otway-Rees protocol (Figure 18) uses long-term symmetric keys shared
with a key server to distribute a new session key for a conversation between two
clients. The protocol does not establish that the same key is delivered to both
A and B [26], only that if either A or B reaches the end of its strand, then the
other has submitted the expected matching original request {|NbM AB|}KBS

or {|NaM AB|}KAS
. Also, K is not disclosed, assuming that the server chooses

a uniquely originating session key K.

5.1.1 Strand Spaces for Otway-Rees

The regular strands are defined to be of the form:

(1) “Initiator strands” in Init[A,B,N,M,K], which have trace:

〈+M AB {|N M AB|}KAS
,−M {|N K|}KAS

〉
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{|Nb K|}KBS

M4 = M {|Na K|}KAS

Fig. 18. Message Exchange in Otway-Rees

(2) ‘Responder strands” in Resp[A,B,N,M,K,H,H′], which have trace:

〈 − M ABH,
+ M ABH {|N M AB|}KBS

,

− M H ′ {|N K|}KBS
,

+ M H ′〉

(3) ‘Server strands” in Serv[A,B,Na, Nb,M,K] with trace:

〈 − M AB {|NaM AB|}KAS
{|NbM AB|}KBS

,

+ M {|NaK|}KAS
{|NbK|}KBS

〉

The principal active in Init[A,B,N,M,K] is A, while the active principal in
Resp[A,B,N,M,K, ∗∗] is B. 1 We define LT to be the set of long-term keys,
i.e. the range of the injective function KAS for A ∈ Tname. All long-terms
keys are symmetrical: K ∈ LT implies K = K−1.

We will use three side assumptions.

(1) We assume that the responder’s nonce originates on that strand, which
implies that Resp[A,B,N,M,K,H,H′] = ∅ if N @ H.

1 We sometimes use an asterisk to indicate a union over a particular argument
position, and a double asterisk to indicate a union over all remaining argument po-
sitions. Thus, for instance, Serv[∗, ∗, ∗, ∗, ∗,K] is the set of all server strands emitting
the session key K; Resp[A,B,N,M,K, ∗∗] is the set of all responder strands with
initiator A, responder B, nonce N , round number M , session key K, and any value
of the remaining parameters. We will also abbreviate a form like Serv[∗, ∗, ∗, ∗, ∗,K]
to Serv[∗∗,K].
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(2) We assume that the terms H and H′, which are simply forwarded by
the responder with no interpretation or processing, contain no proper
encrypted subterms. That is, {|g|}K @ H and {|g|}K �= H implies

Resp[A,B,N,M,K,H,H ′] = ∅;

and likewise for H ′. We point out below (Section 5.1.3) that this assump-
tion does not mask any possible failure of the protocol.

(3) We assume that the server generates keys in a reasonable manner, in the
sense that Serv[∗∗, K] = ∅ unless: K �∈ KP; K = K−1; K is uniquely orig-
inating; and K �∈ LT. It follows from the unique origination assumption
that the cardinality |Serv[∗∗, K]| ≤ 1 for every K.

An assumption of the same form as (2) is always useful when a principal
forwards an encrypted component it cannot decrypt. An assumption of the
same form as (3) always characterizes the intended behavior of a key server.
Let Σ be a strand space satisfying these three conditions.

5.1.2 Otway-Rees Authentication

Structurally, Otway-Rees achieves its authentication guarantees in three steps.

(1) The long-term keys LT are not disclosed by the protocol. Thus, if K ∈ LT
and K �∈ KP, then K ∈ S0. Hence, if the server distributes a session key
K ′ to principals with uncompromised keys, then K′ ∈ S1.

(2) The server strand receives an unsolicited test that authenticates the initial
positive node of the initiator and responder.

(3) The initiator strand contains an outgoing test for Na in {|NaM AB|}KAS
;

this authenticates the server strand. Likewise, the responder strand con-
tains an outgoing test for Nb in {|NbM AB|}KBS

, which authenticates the
server strand.

The initiator authenticates the responder only in that it authenticates the
server strand, which has authenticated the occurrence of the responder’s initial
positive node. The situation is symmetrical for the responder authenticating
the initiator.

Because K �@ term(n) for long-term keys K ∈ LT and regular nodes n, Defini-
tion 12 immediately entails LT ⊂ S0∪KP. Because the initiator and responder
strands emit no new components in which keys occur, a session key can be
compromised only if the server sends it out encrypted with a compromised
long term key. By the unique origination assumption on session keys, if it
is sent out under uncompromised long term keys, then the server will never
re-use it with compromised long term keys. Summarizing this, we have:
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Proposition 22 LT ⊂ S0∪KP. If KAS , KBS �∈ KP and Serv[A,B, ∗, ∗, ∗, K] �=
∅ then K ∈ S1.

Turning now to the server’s authentication guarantee, we use unsolicited tests.

Proposition 23 Suppose that C is a bundle in Σ; A �= B; KAS, KBS �∈ KP;
and s ∈ Serv[A,B,Na, Nb,M, ∗] has C-height 1.

Then there exist si ∈ Init[A,B,Na,M, ∗] and sr ∈ Resp[A,B,Nb,M, ∗∗] such
that si has C-height 1 and sr has C-height 2.

Proof. The terms {|NaM AB|}KAS
and {|NbM AB|}KBS

are unsolicited tests,
and therefore (Authentication Test 3) occur on positive regular nodes in C.
When A �= B, the latter occurs positively only on a node 〈sr, 2〉 where sr ∈
Resp[A,B,Nb,M, ∗∗].

As for {|NaM AB|}KAS
, it may occur positively either on an initiator strand

si ∈ Init[A,B,Na,M, ∗] or as H or H ′ in a strand s′r ∈ Resp[∗∗, H, ∗] or
Resp[∗∗, H ′]. Let S be the set of all regular nodes in C having {|NaM AB|}KAS

as a component. Since S is non-empty, it has aC-minimal member n0 (Propo-
sition 27). Since neither H nor H ′ occurs new on a responder strand, n0 can
only be of the form 〈si, 1〉 for si ∈ Init[A,B,Na,M, ∗]. ✷

If A = B, then {|N M AB|}KAS
= {|N M AB|}KBS

, so the server can no longer
be sure that both an initiator strand and a responder strand are present.
This is the explanation for the odd attack, attributed to Michael Goldsmith,
in which “the responder thinks he wants to talk to himself, but he really
doesn’t.”

(1) P (B) −→ B: BBM H;
(2) B −→ P (S): BBM H {|NbM BB|}KBS

(3) P (B) −→ S: BBM{|NbM BB|}KBS
{|NbM BB|}KBS

which causes a normal server strand, despite the non-existence of any active
initiator.

Proposition 24 Suppose that C is a bundle in Σ; A �= B; KAS �∈ KP; and
si ∈ Init[A,B,Na,M,K] has C-height 2.

Then there exists s ∈ Serv[A,B,Na, ∗,M,K] with C-height 2.

Proof. 〈si, 1〉 ⇒+ 〈si, 2〉 is an outgoing test forNa in {|NaM AB|}KAS
. There-

fore there is a regular transforming edge for Na (Authentication Test 1). By
inspection, this can only lie on a server strand s ∈ Serv[A,B,Na, ∗,M,K].
✷
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Proposition 25 Suppose that C is a bundle in Σ; A �= B; KBS �∈ KP; and
sr ∈ Resp[A,B,Nb,M,K, ∗∗] has C-height 3.

Then there exists s ∈ Serv[A,B, ∗, Nb,M,K] with C-height 2.

Proof. 〈sr, 2〉 ⇒+ 〈sr, 3〉 is an outgoing test forNb in {|NbM AB|}KBS
. There-

fore there is a regular transforming edge for Nb (Authentication Test 1). By
inspection, this can only lie on a server strand s ∈ Serv[A,B, ∗, Nb,M,K].
✷

These three theorems exhaust the authentication that this protocol actually
achieves. Consider, for example, the initiator’s guarantee that the responder
has been active in a bundle C containing a strand si in Init[A,B,Na,M,K].
It follows from Proposition 24, which establishes that the bundle contains
some s′ ∈ Serv[A,B,Na, ∗,M,K], together with Proposition 23, which further
shows that some sr ∈ Resp[A,B, ∗,M, ∗∗] has C-height 2. Observe that the
Otway-Rees protocol cannot possibly guarantee that the responder strand
(even if completed) will receive the same session key [26].

5.1.3 The Constraint on Uninterpreted Terms

In Section 5.1.1, we assumed (Clause 2) that the termsH andH′ contain no en-
crypted proper subterms for a responder strand in Resp[A,B,N,M,K,H,H′].
However, the responder B cannot enforce this constraint, because in the in-
tended case, these are terms encrypted in A’s long-term key, which are unin-
telligible to B.

In this section we will check that this unenforceable constraint does not hide
any attacks. In particular, if the penetrator can succeed without our restrictive
assumption, then he can also succeed if it is in force.

To this end, we modify the specification of the Otway-Rees protocol by remov-
ing the restriction in Clause 2 that the terms H and H′ contain no encrypted
proper subterms. Let us call this new protocol “unconstrained Otway-Rees” to
distinguish it form the original protocol, which we will refer to (in this section
only) as “constrained Otway-Rees”. Note that any constrained Otway-Rees
bundle is also an unconstrained Otway-Rees bundle. We then show any un-
constrained Otway-Rees bundle C′ is nearly equivalent (in a sense defined
below) to a constrained Otway-Rees bundle C.

To facilitate the following discussion, we will refer to the locations of the H
and H ′ subterms of Resp[A,B,N,M,K,H,H′] nodes as insignificant locations
and the terms at those locations as insignificant terms.

Definition 16 A near equivalence of unconstrained Otway-Rees strand spaces
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C on Σ and C′ on Σ′ is a bijection I from the regular nodes of C to those of
C′ satisfying

(1) I preserves the strand structure, that is m⇒+ n if and only if I(m) ⇒+

I(n).
(2) For any regular node n ∈ C, term(n) and term(I(n)) are identical except

for insignificant locations of term(n) and term(I(n)).
(3) A simple term originates uniquely on regular nodes in Σ iff it originates

uniquely on regular nodes in Σ′.

This definition is clearly weaker than the notion of equivalence (Definition 1)
in that the underlying strand spaces of the bundles may be different. Moreover,
for regular nodes n and I(n), the corresponding terms term(n) and term(I(n))
may be different.

Proposition 26 Any unconstrained Otway-Rees bundle C ′ is nearly equiva-
lent to a constrained Otway-Rees bundle C.

Proof. Let H0, H
′
0 ∈ T be fixed values, chosen so that neither originates

uniquely in Σ′. Let Σ contain the same initiator and server strands as Σ′, and
the same penetrator strands, together with countably many M-strands emit-
ting the termH0 and countably many M-strands emitting the termH′

0. Let the
responder strands of Σ be synthesized from those of Σ′ be replacing the values
of the parameters H and H ′ by H0 and H ′

0; hence we have a bijection correlat-
ing the strands of Resp[A,B,Nb,M,K, ∗∗] in Σ′ and Resp[A,B,Nb,M,K,H0, H

′
0]

in Σ. By the way we selected H0 and H ′
0, Σ satisfies Clause 2.

A term t uniquely originates on a regular strand in Σ′ iff it uniquely originates
on a regular strand in Σ; likewise, the two strand spaces have the same value
for KP. Hence, clauses 1 and 3 are also satisfied, so Σ satisfies all the conditions
for an Otway-Rees strand space.

We may now synthesize a bundle C in Σ from C′. We include the same ini-
tiator, server, and penetrator strands (with the same height). For each re-
sponder strand in Resp[A,B,Nb,M,K,H,H

′] contained in C′, we include the
correlated strand in Resp[A,B,Nb,M,K,H0, H

′
0], with the same height. We

cannot connect these strands directly to the expected sender or recipient, be-
cause they require H0 in place of H and H ′

0 in place of H ′. However, we may
use M-strands to emit the newly required values, and S- and C-strands to splice
them in the required positions. Similarly, we use S- and C-strands to splice
them out again and re-insert the values used in C′ between each responder
strand and the rest of the bundle. The resulting bundle C is a counterexample
to the same property in Σ, because these properties are independent of the
values ofH,H ′ occurring in their responder strands. The other regular strands
are unchanged. ✷
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M1 = ANa

M2 = B {|ANa tb|}KBS
Nb

M3 = {|BNaK tb|}KAS
{|AK tb|}KBS

Nb

M4 = {|AK tb|}KBS
{|Nb|}K

Fig. 19. Neuman-Stubblebine Part I (Authentication)

Hence we may conclude that a strand space Σ′ satisfies the same authentication
properties, even if Clause 2 fails in Σ′.

This technique may be applied more generally to prove authentication results
for protocols which contain unconstrained terms. Suppose Σ is strand space
in which the regular strands are given as traces in parametric form

P[ρ, #A, H] = 〈P1[ρ, #A, H], . . . ,Pn[ρ, #A, H]〉

where #A and H range over terms and ρ indicates a protocol role such as server
or responder. Assume further that

(1) For each i, H occurs only as a component of the term Pi[ρ, #A, H],
(2) H is allowed to assume any value in the message algebra.

Under these hypotheses, to prove any authentication results we may impose
the following constraint on H: H ∈ T and H does not occur anywhere else on
regular strands.

5.2 Neuman-Stubblebine

The Neuman-Stubblebine protocol [18] contains two sub-protocols. We will
call the first sub-protocol the authentication protocol and the second sub-
protocol the re-authentication protocol. In the authentication sub-protocol,
a key distribution center generates a session key for an initiator (a network
client) and a responder (a network server); the message exchange is shown
in Figure 19. This session key is embedded in encrypted form in a re-usable
ticket of the form {|AK T |}KBS

.
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Strands of the form shown in the columns labelled A, B, and S in Fig-
ure 19 will be called Init[A,B,Na, Nb, tb, K,H], Resp[A,B,Na, Nb, tb, K], and
Serv[A,B,Na, Nb, tb, K], respectively.

As in Section 5.1, we define LT to be the set of long-term keys, i.e. the range
of the injective function KAS for A ∈ Tname. All long-terms keys are symmet-
rical: K ∈ LT implies K = K−1. We likewise assume that the server generates
keys in a reasonable way, meaning that that Serv[∗∗, K] = ∅ unless: K �∈ KP;
K = K−1; K is uniquely originating; and K �∈ LT. Because of the unique
origination assumption, it follows that the cardinality |Serv[∗∗, K]| ≤ 1 for
every K.

The overall strategy for showing the responder’s guarantee, assuming given a
strand sr ∈ Resp[A,B,Na, Nb, tb, K] with KAS , KBS �∈ KP, is the following:

(1) As with Otway-Rees, LT ⊂ S0 ∪ KP. So for all K ′, K ′ ∈ S1 whenever
Serv[A,B, ∗, ∗, ∗, K ′] �= ∅.

(2) {|AK tb|}KBS
is an unsolicited test, originating on a regular strand. This

can only be a server strand ss ∈ Serv[A,B, ∗, ∗, tb, K]. Therefore K ∈ S1.
(3) M2 ⇒M4 is an incoming test for Nb in {|Nb|}K . Hence there is a regular

transforming edge producing {|Nb|}K . This can lie only on the second and
third nodes of an initiator strand si ∈ Init[A′, B′, N ′

a, Nb, t
′
b, K, ∗].

(4) Since 〈si, 2〉 contains {|B′N ′
aK t

′
b|}KA′S and K ∈ S1, it follows thatK−1

A′S �∈
P. Moreover K−1

A′S = KA′S.
So {|B′N ′

aK t
′
b|}KA′S is an unsolicited test, originating on a regular

strand. This can only be a server strand s′s ∈ Serv[A′, B′, N ′
a, ∗, t′b, K].

(5) Since server strands construct uniquely originating keys, andK originates
on both ss and s′s, it follows that ss = s′s. Hence, A′ = A, B′ = B,
and t′b = tb. Therefore, si ∈ Init[A,B, ∗, Nb, tb, K, ∗], and this strand has
height at least three.

The initiator’s guarantee is simpler to establish. The edgeM1 ⇒M3 on an ini-
tiator strand is an incoming test for Na in {|BNaK tb|}KAS

. It shows there is a
server strand ss ∈ Serv[A,B,Na, ∗, tb, K]. The first node of ss is an unsolicited
test, showing the existence of a responder strand sr ∈ Resp[A,B,Na, ∗, tb, ∗].

In the re-authentication sub-protocol, the key distribution center no longer
needs to be involved; the initiator again presents the same ticket to the re-
sponder, as shown in Figure 20. However, in the presence of this additional
sub-protocol, step 3 in the responder’s guarantee can no longer be completed.
There is certainly still a transforming edge producing {|Nb|}K , but this edge
may lie either on an initiator strand for Part I of the protocol, or on (conceiv-
ably) either type of strand for Part II. By contrast, the initiator’s guarantee
for Part I is unaffected, because we have not added any strand with a trans-
forming edge producing a term of the form {|BNaK tb|}KAS

.
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Fig. 20. Neuman-Stubblebine, Part II (Re-authentication)
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�
�

Fig. 21. Woo-Lam

5.3 The Woo-Lam Protocol

The Woo-Lam one-way authentication protocol [27] also uses an incoming
test, although in a flawed way [29, 4, 8]. It is intended to allow an initiator
(client) A to authenticate his presence to a responder (networked service) B, by
means of long-term keys shared with a key server. A receives no authenticating
information about B. The behavior of the protocol is given in Figure 21.

It is clear from Figure 21 how this is intended to work. The ⇒+ edge from
B’s first transmission of Nb to its final reception of {|Nb|}KBS

is intended to
serve as an incoming test with that term as test component. The server’s edge
{|A, {|Nb|}KAS

|}KBS
⇒ {|Nb|}KBS

is intended as the corresponding transforming
edge. It “authenticates” that the server has found Nb inside A’s encrypted
message.

Unfortunately this description is enough to see what is wrong with this pro-
tocol. There is another type of transforming edge that produces a term of the
same form as the incoming test component. This is the initiator’s encrypting
edge, in the case in which the initiator is B. Thus, the attacker can wait until
B needs to authenticate itself to any responder, and can then execute the at-
tack shown in Figure 22. Woo and Lam state that they assume that a principal
can detect when it receives an encrypted unit that it has constructed itself; so
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Fig. 22. Woo-Lam Infiltrated

perhaps this attack is not entirely “fair.” See [4] for additional discussion.

Yet another problem (also discussed in [4]) exists. Even when the server con-
structs the term {|Nb|}KBS

, this term does not fully determine the parameters
to the server strand. A second attack on Woo-Lam exploits this. The attacker
starts two sessions with the responder B. In one he purports to be A; in the
other he uses some identity C he has somehow captured, so that KCS ∈ KP.
He then switches the nonce Nb that B generates, intended to authenticate A,
into the session with C, so that B sends {|C, {|Nb|}KCS

|}KBS
to the server. The

server then generates {|Nb|}KBS
, which is the test component for B’s session

with A. The attacker then makes this appear to belong to that session. The
auxiliary session with C fails to complete.

The Woo-Lam example is included here to illustrate how useful the authenti-
cation tests are as a heuristic used to find problems in protocols. They may be
used for this purpose even in a case in which some of the official constraints on
the authentication test are not satisfied. For instance, in the Woo-Lam pro-
tocol, the test component {|Nb|}KBS

could also occur as a proper subterm of
a regular node, namely the message from a responder to the server. However,
the authentication tests still model the reasoning of a protocol designer well
enough to suggest where failures will lie.

6 Cryptographic Protocol Design

The outgoing, incoming, and unsolicited tests, and the authentication results
that apply to them, suggest a protocol design process. At our level of abstrac-
tion, authentication protocol design is largely a matter of selecting authenti-
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Fig. 23. Shape of the New Protocol

cation tests, and constructing a unique regular transforming edge to satisfy
each. 2 We will illustrate this process by an example, leading to a protocol
akin to Carlsen’s protocol [2].

6.1 An Example Design Process

In this example, we aim to modify the Otway-Rees protocol (Figure 18) in
two ways. First, we imagine a situation in which the principals A,B have very
limited cryptographic power. Thus, we would like to avoid encrypting both the
initial requests and the server’s response. Since the latter must be encrypted
(to protect the confidentiality of the session key), we will not encrypt the
original requests. Instead of using outgoing tests, like Otway-Rees, this new
protocol will use incoming tests, because they do not require the initial request
to be encrypted.

Second, the new protocol is intended to assure each principal that the other
is in possession of the same session key, which Otway-Rees does not achieve
(Section 5.1.2). To do so, we will also use incoming tests in which each princi-
pal answers a challenge, using the session key to encrypt the challenge value
presented by the other principal.

We will first describe the shape of the new protocol: It will extend the shape of
Otway-Rees as needed to include the final challenges and response, as shown in
Figure 23. A’s challenge to B may be presented on the transmission α1 → β1,
and B’s response may be returned on β4 → α2, so this does not require any
change to the shape. We will have B present his challenge to A on β4 → α2,

2 Of course, at other levels of abstraction there are other issues, concerning how
to negotiate cryptographic algorithms, how to evaluate whether cryptography has
been used safely, how to format messages, how to distribute certificates, how to align
key streams, and so on, that are not considered at the current level of abstraction.
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Fig. 24. Important Components within the New Protocol

and B answer the challenge on α3 → β5. Adding this message is the only
change we need to make to the shape of the protocol.

A must generate a nonce Na at α1, which will be transformed by the server
on the edge σ1 ⇒ σ2. At node σ2, this nonce must be embedded in the same
encrypted component tA1 as the session key; this will authenticate to A that
the server has generated the session key K.

Also, A must generate a nonce at α1 for B’s use in demonstrating possession
of K. B will transform it along β3 ⇒ β4, emitting it within an encrypted
component tA2 to satisfy A’s second test. We prefer to use the same nonce Na

here too, to save A the computation required to generate another, and we
will need to check that this sharing will not invalidate any assumption of the
authentication test results.

B must likewise generate a nonce Nb at β2, to be transformed by the server
along the edge σ1 ⇒ σ2, producing an encrypted term tB1 . This same nonce
may also be transmitted to A to be transformed along α2 ⇒ α3. A uses the
session key K to produce an encrypted component tB2 containing Nb.

Hence, we may fill in some of the components that must be transmitted over
the different arrows, as tabulated in Figure 24. We include the names of the
principals A and B on arrows α1 → β1 and β2 → σ1, as a practical necessity
so that the recipients have a clue who is making the request. At node α2, both
of A’s incoming tests are complete, so at this point, A has received all his
authentication guarantees.

We must now define the four test components tAi , t
B
i for i = 1, 2. tA1 must

guarantee to A that the key server has generated K in response to Na, and
for use by A and B. Therefore tA1 must take a form such as {| . . . NaBK|}KA

;
the key KA identifies this as a component constructed on behalf of A.
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For a similar reason, tB1 must take a form such as {| . . .NbAK|}KB
. We want

to ensure that tA1 and tB1 are of different forms; to do so we select two distinct
text values, to which we will refer using the constants cI and cR, defining the
first test components

tA1 = {|cINaBK|}KA
and tB1 = {|cRNbAK|}KB

Turning now to the second authentication test for each participant, we need
only that the nonces Na, Nb be encrypted with the session key K, and that
the test components take distinct forms. Hence we may choose

tA2 = {|cINa|}K and tB2 = {|cRNb|}K

We have now selected the complete message structure for the protocol.

6.2 Security Goals of the New Protocol

Informally, the protocol appears to achieve the following: The initiator A and
responder B receive a fresh session key K from a trusted key server. They
share it between themselves without disclosing it to any other party. Each
learns that the other has proceeded far enough in the protocol to have received
the session key.

Let us represent strands with the trace represented in Figure 24 in the col-
umn marked A as Init[A,B,Na, K,Nb]; those with the trace shown in column
B as Resp[A,B,Na, Nb, K]; and those with the trace shown in column S as
Serv[A,B,Na, Nb, K].

Next, let us make the goals more rigorous. Suppose that C is a bundle for the
protocol, and suppose KA, KB �∈ KP.

(1) Authenticating the server:
(a) If si ∈ Init[A,B,Na, K, ∗] has C-height 2, then there exists ss ∈

Serv[A,B,Na, ∗, K] of C-height 2.
(b) If sr ∈ Resp[A,B, ∗, Nb, K] has C-height 3, then there exists ss ∈

Serv[A,B, ∗, Nb, K] of C-height 2.
These conditions say that if the initiator reaches node α2 (or the respon-
der reaches β3), then the server has a run that matches in principals,
nonce, and session key. Goal 1a is achieved by the incoming test on the
edge α1 ⇒ α2 with test component tA1 , and Goal 1b is achieved by the
incoming test on the edge β2 ⇒ β3 with test component tB1 .

(2) Session key secrecy: If ss ∈ Serv[A,B, ∗, ∗, K] has C-height 2, then K ∈
S1.

This requires the same assumption about server behavior that we used
in Section 5.1.1, Clause 3, and again in Section 5.2.
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Fig. 25. Carlsen’s Protocol

(3) Authenticating the interlocutor:
(a) If si ∈ Init[A,B,Na, K, ∗] has C-height 2, then there exists sr ∈

Resp[A,B,Na, ∗, K] of C-height 4.
(b) If sr ∈ Resp[A,B,Na, Nb, K] has C-height 5, then there exists si ∈

Init[A,B,Na, K,Nb] of C-height 3.
These two statements assert that the principals’ use of K to encrypt Na

and Nb shows them that each agrees on the other’s identity, as well as
the session key and the nonces. Goal 3a is achieved by the incoming test
on the edge α1 ⇒ α2 with test component tA2 , and Goal 3b is achieved by
the incoming test on the edge β2 ⇒ β5 with test component tB2 .

The check that the incoming tests achieve the corresponding goals is routine
using the incoming authentication test result. The new protocol is very similar
to Carlsen’s (Figure 25). The differences between Carlsen’s protocol and our
new one are that we decided to reuse Nb for the responder’s second test;
we decided to distinguish the first test components using different constants
rather than different orderings; and we chose to distinguish the forms of the
second test components. Of these contrasts, only the last makes any noticeable
difference. It simplifies our proof of each principal’s guarantee that the other
has received the session key, although a careful argument shows that the same
property is also achieved by Carlsen’s protocol. However, neither Carlsen’s
protocol nor ours gives the key server any authentication guarantee whatever,
because ANaBNb does not contain an unsolicited test.

The authentication tests seem to us to serve quite nicely as a design concept,
allowing a designer to change a protocol to reallocate cryptographic burden
while achieving the intended security goals.
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6.3 Summary: Protocol Correctness

Having completed a design process, there are five questions that need to be
answered in order to ensure that the resulting protocol has achieved its security
goals:

(1) Is the set of penetrable keys P disjoint from the decryption keys for
outgoing components, and disjoint from the encryption keys for incoming
and unsolicited components?

(2) Is any test component a proper subterm of a component of term(n) for
any regular node n?

(3) Are there ever two types of transforming edge that transform the same
outgoing component, or produce the same incoming component?

(4) Do the parameters contained in the test components completely deter-
mine the data values contained in the desired authentication guarantee?

(5) If a data value is intended to remain secret, is it always protected by at
least one key K whose corresponding decryption key K−1 is not penetra-
ble?

The first two questions must be answered affirmatively to apply Authentica-
tion Tests 1–3, which then entail that there exist matching regular transform-
ing edges.

But must those regular transforming edges lie on the strands that we expect
them to (Question 3)? A common cause of authentication failure arises when
there is also another edge that can transform the same value (e.g. Neuman-
Stubblebine with re-authentication and Woo-Lam). Alternatively, we may
know that a transforming edge of the kind desired is present, but it may
not determine all of the parameters that we would like to agree on (Ques-
tion 4). This was the reason for the failure of the original Needham-Schroeder
protocol, and for the second Woo-Lam failure.

If the third and fourth questions are answered affirmatively, then the authen-
tication goals of the protocol will have been met. Finally, question 5 assures
that the protocol’s secrecy goals will also be met.

Protocol designers need to be alert when Question 3 and Question 4 receive
negative answers. Then there are unintended services, situations in which the
protocol itself offers a transformation that can be abused by the penetrator.
We recommend that protocol designers, even when working without any for-
mal framework, ask themselves whether their protocols offer any unintended
services to assist the penetrator in achieving what the protocol regards as es-
tablishing authentication. Unintended services are easy to recognize, and they
are a strong clue where an attack on a protocol may lie.
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A Strands, Bundles, and the Penetrator

In this appendix, we define the basic strand space notions used in the body
of the paper. This material is derived from [26], with a few small changes.
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For instance, the penetrator strands of type T (which duplicated a value for
two receivers) and F (which flushed a value) were unnecessary. A positive node
may be gregarious, having multiple out-arrows, which makes T strands unnec-
essary; a positive node may be lonely, having no out-arrows, which makes F
strands unnecessary. Eliminating them from Definition 23 leads to a more
symmetrical set of penetrator behaviors, simplifying normalization and other
graph operations on bundles.

A.1 Strand Spaces

Consider a set A, the elements of which are the possible messages that can be
exchanged between principals in a protocol. We will refer to the elements of
A as terms. We assume that a subterm relation is defined on A. t0 @ t1 means
t0 is a subterm of t1. We constrain the set A further below in Section A.3, and
define a subterm relation there.

In a protocol, principals can either send or receive terms. We represent trans-
mission of a term as the occurrence of that term with positive sign, and re-
ception of a term as its occurrence with negative sign.

Definition 17 A signed term is a pair 〈σ, a〉 with a ∈ A and σ one of the
symbols +,−. We will write a signed term as +t or −t. (±A)∗ is the set of
finite sequences of signed terms. We will denote a typical element of (±A)∗ by
〈 〈σ1, a1〉, . . . , 〈σn, an〉 〉.

A strand space over A is a set Σ together with a trace mapping tr : Σ → (±A)∗.

By abuse of language, we will still treat signed terms as ordinary terms. For
instance, we shall refer to subterms of signed terms. We will usually represent
a strand space by its underlying set of strands Σ.

Definition 18 Fix a strand space Σ.

(1) A node is a pair 〈s, i〉, with s ∈ Σ and i an integer satisying 1 ≤ i ≤
length(tr(s)). The set of nodes is denoted by N. We will say the node
〈s, i〉 belongs to the strand s. Clearly, every node belongs to a unique
strand.

(2) If n = 〈s, i〉 ∈ N then index(n) = i and strand(n) = s. Define term(n) to
be (tr(s))i, i.e. the ith signed term in the trace of s. Similarly, uns term(n)
is ((tr(s))i)2, i.e. the unsigned part of the ith signed term in the trace of
s.

(3) There is an edge n1 → n2 if and only if term(n1) = +a and term(n2) =
−a for some a ∈ A. Intuitively, the edge means that node n1 sends the
message a, which is received by n2, recording a potential causal link
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between those strands.
(4) When n1 = 〈s, i〉 and n2 = 〈s, i+ 1〉 are members of N, there is an edge
n1 ⇒ n2. Intuitively, the edge expresses that n1 is an immediate causal
predecessor of n2 on the strand s. We write n′ ⇒+ n to mean that n′

precedes n (not necessarily immediately) on the same strand.
(5) An unsigned term t occurs in n ∈ N iff t @ term(n).
(6) Suppose I is a set of unsigned terms. The node n ∈ N is an entry point for
I iff term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) �∈ I.

(7) An unsigned term t originates on n ∈ N iff n is an entry point for the set
I = {t′ : t @ t′}.

(8) An unsigned term t is uniquely originating iff t originates on a unique
n ∈ N.

If a term t originates uniquely in a particular strand space, then it can play
the role of a nonce or session key in that structure.

N together with both sets of edges n1 → n2 and n1 ⇒ n2 is a directed graph
〈N, (→ ∪ ⇒)〉.

A.2 Bundles and Causal Precedence

A bundle is a finite subgraph of the graph 〈N, (→ ∪ ⇒)〉, for which we can
regard the edges as expressing the causal dependencies of the nodes.

Definition 19 Suppose →C ⊂ →; suppose ⇒C ⊂ ⇒; and suppose C =
〈NC, (→C ∪ ⇒C)〉 is a subgraph of 〈N, (→ ∪ ⇒)〉. C is a bundle if:

(1) NC and →C ∪ ⇒C are finite.
(2) If n2 ∈ NC and term(n2) is negative, then there is a unique n1 such that
n1 →C n2.

(3) If n2 ∈ NC and n1 ⇒ n2 then n1 ⇒C n2.
(4) C is acyclic.

In conditions 2 and 3, it follows that n1 ∈ NC, because C is a graph.

For our purposes, it does not matter whether communication is regarded as a
synchronizing event or as an asynchronous activity. The definition of bundle
formalizes a process communication model with three properties:

• A strand (process) may send and receive messages, but not both at the same
time;

• When a strand receives a message t, there is a unique node transmitting t
from which the message was immediately received;

• When a strand transmits a message t, many strands may immediately re-
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ceive t.

Notational Convention 1 A node n is in a bundle C = 〈NC,→C ∪ ⇒C〉,
written n ∈ C, if n ∈ NC; a strand s is in C if all of its nodes are in NC.

If C is a bundle, then the C-height of a strand s is the largest i such that
〈s, i〉 ∈ C. C-trace(s) = 〈tr(s)(1), . . . , tr(s)(m)〉, where m = C-height(s).

Definition 20 If S is a set of edges, i.e. S ⊂→ ∪ ⇒, then ≺S is the tran-
sitive closure of S, and S is the reflexive, transitive closure of S.

The relations ≺S and S are each subsets of NS ×NS, where NS is the set
of nodes incident with any edge in S.

Proposition 27 Suppose C is a bundle. Then C is a partial order, i.e. a
reflexive, antisymmetric, transitive relation. Every non-empty subset of the
nodes in C has C-minimal members.

We regard C as expressing causal precedence, because n ≺S n′ holds only
when n’s occurrence causally contributes to the occurrence of n′. When a
bundle C is understood, we will simply write . Similarly, “minimal” will
mean C-minimal.

A.3 Terms, Encryption, and Freeness Assumptions

We will now specialize the set of terms A. In particular we will assume given:

• A set T ⊆ A of texts (representing the atomic messages).
• A set K ⊆ A of cryptographic keys disjoint from T, equipped with a unary

operator inv : K → K. We assume that inv is an inverse mapping each
member of a key pair for an asymmetric cryptosystem to the other, and
each symmetric key to itself.

• Two binary operators encr : K× A → A and join : A× A → A.

We follow custom and write inv(K) as K−1, encr(K,m) as {|m|}K , and
join(a, b) as a b. If K is a set of keys, K−1 denotes the set of inverses of ele-
ments of K. We assume, like many others (e.g. [14, 16, 20]), that A is freely
generated, which is crucial for the results in this paper.

Axiom 1 A is freely generated from T and K by encr and join.

Definition 21 The subterm relation @ is defined inductively, as the smallest
relation such that a @ a; a @ {|g|}K if a @ g; and a @ g h if a @ g or a @ h.

g is a proper subterm of h if g @ h and g �= h.
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By this definition, for K ∈ K, we have K @ {|g|}K only if K @ g already.

Definition 22 (1) If K ⊂ K, then t0 @K t if t is in the smallest set contain-
ing t0 and closed under encryption with K ∈ K and concatenation with
arbitrary terms t1.

(2) A term t0 is a visible subterm of t if t0 @∅ t.
(3) A term t is simple if it is not of the form g h.
(4) A term t0 is a component of t if t0 is simple and t0 @∅ t.

We say that t0 is a component of a node n if t0 is a component of term(n).

A.4 Penetrator Strands

The atomic actions available to the penetrator are encoded in a set of pene-
trator traces. They summarize his ability to generate known messages, piece
messages together, and apply cryptographic operations using keys that be-
come available to him. A protocol attack typically requires hooking together
several of these atomic actions.

The actions available to the penetrator are relative to the set of keys that the
penetrator knows initially. We encode this in a parameter, the set of penetrator
keys KP.

Definition 23 A penetrator trace relative to KP is one of the following:

Mt Text message: 〈+t〉 where t ∈ T.
KK Key: 〈+K〉 where K ∈ KP.
Cg,h Concatenation: 〈−g, −h, +g h〉
Sg,h Separation: 〈−g h, +g, +h〉
Eh,K Encryption: 〈−K, −h, +{|h|}K〉.
Dh,K Decryption: 〈−K−1, −{|h|}K , +h〉.

PΣ is the set of all strands s ∈ Σ such that tr(s) is a penetrator trace.

A strand s ∈ Σ is a penetrator strand if it belongs to PΣ, and a node is a
penetrator node if the strand it lies on is a penetrator strand. Otherwise we
will call it a non-penetrator or regular strand or node. A node n is M, K,
etc. node if n lies on a penetrator strand with a trace of kind M, K, etc.

We assume that all strand spaces have an adequate supply of C, S, E, and D
strands; by contrast, M and K strands vary, thus modeling the set of values
the penetrator may know or be able to guess.
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